Distinct Profiles of Fecal Volatile Organic Compounds Discriminate Ulcerative Colitis Patients With an Ileoanal Pouch From Those With an Intact Colon

IF 4.5 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Chu K. Yao, Kraig Green, Alice S. Day, Zaid M. Ardalan, Rachael Slater, Robert V. Bryant, Peter R. Gibson, Chris Probert
{"title":"Distinct Profiles of Fecal Volatile Organic Compounds Discriminate Ulcerative Colitis Patients With an Ileoanal Pouch From Those With an Intact Colon","authors":"Chu K. Yao,&nbsp;Kraig Green,&nbsp;Alice S. Day,&nbsp;Zaid M. Ardalan,&nbsp;Rachael Slater,&nbsp;Robert V. Bryant,&nbsp;Peter R. Gibson,&nbsp;Chris Probert","doi":"10.1002/mnfr.70003","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Fecal volatile organic compounds (VOCs) offer insights into gut microbiota function that may drive the pathogenesis of ulcerative colitis (UC). This cross-sectional study aimed to compare dietary intake and VOC patterns in UC patients with an ileoanal pouch compared to those with an intact colon. Seven-day food records and fecal samples were collected from UC patients with an intact colon (<i>n</i> = 28) or an ileoanal pouch (<i>n</i> = 11). Fecal VOC profiles were analyzed using gas chromatography-mass spectrometry. Dietary intake in both groups was largely similar. The mean Jaccard similarity index of VOC was 0.55 (95% CI:0.53, 0.56) in the pouch compared with 0.48 (0.47, 0.49) in the colon group (<i>p</i> &lt; 0.01). A lower proportion of VOC classes was detected in the pouch, including sulfide (9% vs. 57%; <i>p</i> &lt; 0.01), branched-chain fatty acids (BCFAs; 45%–64% vs. 93%–96%; <i>p</i> &lt; 0.01), and ketones (45%–64% vs. 93%–96%; <i>p</i> &lt; 0.01), along with a higher proportion of butyric acid (91% vs. 29%; <i>p</i> &lt; 0.001). Unrelated to diet, VOC profiles show less functional diversity, reduced protein and greater carbohydrate fermentation, and altered production of secondary metabolites in the UC-pouch compared with the intact colon. These differences in the metabolic environment of the gut microbiota provide insights into pathogenesis and suggest that microbial-targeted interventions should be tailored accordingly.</p>\n </section>\n </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"69 7","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mnfr.70003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mnfr.70003","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fecal volatile organic compounds (VOCs) offer insights into gut microbiota function that may drive the pathogenesis of ulcerative colitis (UC). This cross-sectional study aimed to compare dietary intake and VOC patterns in UC patients with an ileoanal pouch compared to those with an intact colon. Seven-day food records and fecal samples were collected from UC patients with an intact colon (n = 28) or an ileoanal pouch (n = 11). Fecal VOC profiles were analyzed using gas chromatography-mass spectrometry. Dietary intake in both groups was largely similar. The mean Jaccard similarity index of VOC was 0.55 (95% CI:0.53, 0.56) in the pouch compared with 0.48 (0.47, 0.49) in the colon group (p < 0.01). A lower proportion of VOC classes was detected in the pouch, including sulfide (9% vs. 57%; p < 0.01), branched-chain fatty acids (BCFAs; 45%–64% vs. 93%–96%; p < 0.01), and ketones (45%–64% vs. 93%–96%; p < 0.01), along with a higher proportion of butyric acid (91% vs. 29%; p < 0.001). Unrelated to diet, VOC profiles show less functional diversity, reduced protein and greater carbohydrate fermentation, and altered production of secondary metabolites in the UC-pouch compared with the intact colon. These differences in the metabolic environment of the gut microbiota provide insights into pathogenesis and suggest that microbial-targeted interventions should be tailored accordingly.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Nutrition & Food Research
Molecular Nutrition & Food Research 工程技术-食品科技
CiteScore
8.70
自引率
1.90%
发文量
250
审稿时长
1.7 months
期刊介绍: Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines: Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics. Immunology: Understanding the interactions of food and the immune system. Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes. Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信