Exploring effects of platelet contractility on the kinetics, thermodynamics, and mechanisms of fibrin clot contraction.

npj Biological Physics and Mechanics Pub Date : 2025-01-01 Epub Date: 2025-02-24 DOI:10.1038/s44341-025-00011-9
Evgenii Kliuchnikov, Alina D Peshkova, Minh Quan Vo, Kenneth A Marx, Rustem I Litvinov, John W Weisel, Prashant K Purohit, Valeri Barsegov
{"title":"Exploring effects of platelet contractility on the kinetics, thermodynamics, and mechanisms of fibrin clot contraction.","authors":"Evgenii Kliuchnikov, Alina D Peshkova, Minh Quan Vo, Kenneth A Marx, Rustem I Litvinov, John W Weisel, Prashant K Purohit, Valeri Barsegov","doi":"10.1038/s44341-025-00011-9","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanisms of blood clot contraction - platelet-driven fibrin network remodeling, are not fully understood. We developed a detailed computational <i>ClotDynaMo</i> model of fibrin network with activated platelets, whose clot contraction rate for normal 450,000/µl human platelets depends on serum viscosity <i>η</i>, platelet filopodia length <i>l</i>, and weakly depends on filopodia traction force <i>f</i> and filopodia extension-retraction speed <i>v</i>. Final clot volume is independent of <i>η</i>, but depends on <i>v</i>, <i>f</i> and <i>l</i>. Analysis of <i>ClotDynaMo</i> output revealed a 2.24 TJ/mol clot contraction free energy change, with ~67% entropy and ~33% internal energy changes. The results illuminate the \"optimal contraction principle\" that maximizes volume change while minimizing energy cost. An 8-chain continuum model of polymer elasticity containing platelet forces, captures clot contractility as a function of platelet count, <i>η</i> and <i>l</i>. The <i>ClotDynaMo</i> and continuum models can be extended to include red blood cells, variable platelet properties, and mechanics of fibrin network.</p>","PeriodicalId":501703,"journal":{"name":"npj Biological Physics and Mechanics","volume":"2 1","pages":"6"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850289/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biological Physics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44341-025-00011-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanisms of blood clot contraction - platelet-driven fibrin network remodeling, are not fully understood. We developed a detailed computational ClotDynaMo model of fibrin network with activated platelets, whose clot contraction rate for normal 450,000/µl human platelets depends on serum viscosity η, platelet filopodia length l, and weakly depends on filopodia traction force f and filopodia extension-retraction speed v. Final clot volume is independent of η, but depends on v, f and l. Analysis of ClotDynaMo output revealed a 2.24 TJ/mol clot contraction free energy change, with ~67% entropy and ~33% internal energy changes. The results illuminate the "optimal contraction principle" that maximizes volume change while minimizing energy cost. An 8-chain continuum model of polymer elasticity containing platelet forces, captures clot contractility as a function of platelet count, η and l. The ClotDynaMo and continuum models can be extended to include red blood cells, variable platelet properties, and mechanics of fibrin network.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信