Comparative analysis of machine learning and deep learning algorithms for knee arthritis detection using YOLOv8 models.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Ilkay Cinar
{"title":"Comparative analysis of machine learning and deep learning algorithms for knee arthritis detection using YOLOv8 models.","authors":"Ilkay Cinar","doi":"10.1177/08953996241308770","DOIUrl":null,"url":null,"abstract":"<p><p>Knee arthritis is a prevalent joint condition that affects many people worldwide. Early detection and appropriate treatment are essential to slow the disease's progression and enhance patients' quality of life. In this study, various machine learning and deep learning algorithms were used to detect knee arthritis. The machine learning models included k-NN, SVM, and GBM, while DenseNet, EfficientNet, and InceptionV3 were used as deep learning models. Additionally, YOLOv8 classification models (YOLOv8n-cls, YOLOv8s-cls, YOLOv8m-cls, YOLOv8l-cls, and YOLOv8x-cls) were employed. The \"Annotated Dataset for Knee Arthritis Detection\" with five classes (Normal, Doubtful, Mild, Moderate, Severe) and 1650 images were divided into 80% training, 10% validation, and 10% testing using the Hold-Out method. YOLOv8 models outperformed both machine learning and deep learning algorithms. k-NN, SVM, and GBM achieved success rates of 63.61%, 64.14%, and 67.36%, respectively. Among deep learning models, DenseNet, EfficientNet, and InceptionV3 achieved 62.35%, 70.59%, and 79.41%. The highest success was seen in the YOLOv8x-cls model at 86.96%, followed by YOLOv8l-cls at 86.79%, YOLOv8m-cls at 83.65%, YOLOv8s-cls at 80.37%, and YOLOv8n-cls at 77.91%.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"8953996241308770"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241308770","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Knee arthritis is a prevalent joint condition that affects many people worldwide. Early detection and appropriate treatment are essential to slow the disease's progression and enhance patients' quality of life. In this study, various machine learning and deep learning algorithms were used to detect knee arthritis. The machine learning models included k-NN, SVM, and GBM, while DenseNet, EfficientNet, and InceptionV3 were used as deep learning models. Additionally, YOLOv8 classification models (YOLOv8n-cls, YOLOv8s-cls, YOLOv8m-cls, YOLOv8l-cls, and YOLOv8x-cls) were employed. The "Annotated Dataset for Knee Arthritis Detection" with five classes (Normal, Doubtful, Mild, Moderate, Severe) and 1650 images were divided into 80% training, 10% validation, and 10% testing using the Hold-Out method. YOLOv8 models outperformed both machine learning and deep learning algorithms. k-NN, SVM, and GBM achieved success rates of 63.61%, 64.14%, and 67.36%, respectively. Among deep learning models, DenseNet, EfficientNet, and InceptionV3 achieved 62.35%, 70.59%, and 79.41%. The highest success was seen in the YOLOv8x-cls model at 86.96%, followed by YOLOv8l-cls at 86.79%, YOLOv8m-cls at 83.65%, YOLOv8s-cls at 80.37%, and YOLOv8n-cls at 77.91%.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信