Volumetric mesoscopic electrophysiology: a new imaging modality for the nonhuman primate.

IF 2.1 3区 医学 Q3 NEUROSCIENCES
Journal of neurophysiology Pub Date : 2025-04-01 Epub Date: 2025-02-27 DOI:10.1152/jn.00399.2024
Tobias Teichert, László Papp, Ferenc Vincze, Nioka Burns, Baldwin Goodell, Zabir Ahmed, Andrew Holmes, Maysam Chamanzar, Kate Gurnsey
{"title":"Volumetric mesoscopic electrophysiology: a new imaging modality for the nonhuman primate.","authors":"Tobias Teichert, László Papp, Ferenc Vincze, Nioka Burns, Baldwin Goodell, Zabir Ahmed, Andrew Holmes, Maysam Chamanzar, Kate Gurnsey","doi":"10.1152/jn.00399.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The primate brain is a densely interconnected organ whose function is best understood by recording from the entire structure in parallel, rather than parts of it in sequence. However, available methods either have limited temporal resolution (functional magnetic resonance imaging; fMRI), limited spatial resolution (macroscopic electroencephalography), or a limited field of view (microscopic electrophysiology). To address this need, we developed a volumetric, mesoscopic recording approach (MePhys) by tessellating the volume of a monkey hemisphere with 992 electrode contacts that were distributed across 62 chronically implanted multielectrode shafts. We showcase the scientific promise of MePhys by describing the functional interactions of local field potentials between the more than 300,000 simultaneously recorded pairs of electrodes. We find that a subanesthetic dose of ketamine-believed to mimic certain aspects of psychosis-can create a pronounced state of functional disconnection and prevent the formation of stable large-scale intrinsic states. We conclude that MePhys provides a new and fundamentally distinct window into brain function whose unique profile of strengths and weaknesses complements existing approaches in synergistic ways.<b>NEW & NOTEWORTHY</b> We created a new imaging modality for the nonhuman primate, mesoscopic electrophysiology, or MePhys by sampling local field potentials (LFPs) in a dense three-dimensional grid from across the volume of one entire hemisphere. MePhys combines the millisecond temporal resolution of electrophysiology with the large field of view and millimeter spatial resolution of functional magnetic resonance imaging (fMRI). MePhys' unique profile of strengths and limitations makes it an ideal imaging method for the nonhuman primate brain observatories of the future.</p>","PeriodicalId":16563,"journal":{"name":"Journal of neurophysiology","volume":" ","pages":"1034-1053"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/jn.00399.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The primate brain is a densely interconnected organ whose function is best understood by recording from the entire structure in parallel, rather than parts of it in sequence. However, available methods either have limited temporal resolution (functional magnetic resonance imaging; fMRI), limited spatial resolution (macroscopic electroencephalography), or a limited field of view (microscopic electrophysiology). To address this need, we developed a volumetric, mesoscopic recording approach (MePhys) by tessellating the volume of a monkey hemisphere with 992 electrode contacts that were distributed across 62 chronically implanted multielectrode shafts. We showcase the scientific promise of MePhys by describing the functional interactions of local field potentials between the more than 300,000 simultaneously recorded pairs of electrodes. We find that a subanesthetic dose of ketamine-believed to mimic certain aspects of psychosis-can create a pronounced state of functional disconnection and prevent the formation of stable large-scale intrinsic states. We conclude that MePhys provides a new and fundamentally distinct window into brain function whose unique profile of strengths and weaknesses complements existing approaches in synergistic ways.NEW & NOTEWORTHY We created a new imaging modality for the nonhuman primate, mesoscopic electrophysiology, or MePhys by sampling local field potentials (LFPs) in a dense three-dimensional grid from across the volume of one entire hemisphere. MePhys combines the millisecond temporal resolution of electrophysiology with the large field of view and millimeter spatial resolution of functional magnetic resonance imaging (fMRI). MePhys' unique profile of strengths and limitations makes it an ideal imaging method for the nonhuman primate brain observatories of the future.

体积介观电生理学:非人类灵长类动物的一种新的成像方式。
灵长类动物的大脑是一个紧密相连的器官,其功能最好通过平行记录整个结构,而不是按顺序记录部分结构来了解。然而,现有的方法要么具有有限的时间分辨率(功能性磁共振成像),要么具有有限的空间分辨率(宏观脑电图),要么具有有限的视野(微观电生理学)。为了满足这一需求,我们开发了一种体积,介观记录方法(MePhys),通过对分布在62个长期植入的多电极轴上的992个电极触点的猴子半球的体积进行镶嵌。我们通过描述同时记录的30多万对电极之间的局部场电位的功能相互作用,展示了MePhys的科学前景。我们发现,亚麻醉剂量的氯胺酮——据信可以模仿精神病的某些方面——可以造成明显的功能断开状态,并阻止稳定的大规模内在状态的形成。我们的结论是,MePhys为大脑功能提供了一个新的、从根本上独特的窗口,其独特的优势和劣势以协同的方式补充了现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of neurophysiology
Journal of neurophysiology 医学-神经科学
CiteScore
4.80
自引率
8.00%
发文量
255
审稿时长
2-3 weeks
期刊介绍: The Journal of Neurophysiology publishes original articles on the function of the nervous system. All levels of function are included, from the membrane and cell to systems and behavior. Experimental approaches include molecular neurobiology, cell culture and slice preparations, membrane physiology, developmental neurobiology, functional neuroanatomy, neurochemistry, neuropharmacology, systems electrophysiology, imaging and mapping techniques, and behavioral analysis. Experimental preparations may be invertebrate or vertebrate species, including humans. Theoretical studies are acceptable if they are tied closely to the interpretation of experimental data and elucidate principles of broad interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信