Cortical beta modulation during active movement is highly reproducible in healthy adults.

IF 2.1 3区 医学 Q3 NEUROSCIENCES
Linda Niemelä, Lola Lerche, Mia Johanna Illman, Erika Kirveskari, Mia Liljeström, K Amande M Pauls, Hanna Renvall
{"title":"Cortical beta modulation during active movement is highly reproducible in healthy adults.","authors":"Linda Niemelä, Lola Lerche, Mia Johanna Illman, Erika Kirveskari, Mia Liljeström, K Amande M Pauls, Hanna Renvall","doi":"10.1152/jn.00377.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The rolandic beta (13-30 Hz) rhythm recorded over the somatomotor cortices is known to be modified by movement execution and observation. Beta modulation has been considered as a biomarker of motor function in various neurological diseases, and active natural-like movements might offer a clinically feasible method to assess them. While the stability of movement-related beta modulation has been addressed during passive and highly controlled active movements, the test-retest reliability of natural-like movements has not been established. We used magnetoencephalography (MEG) to evaluate the reproducibility of movement-related sensorimotor beta modulation longitudinally over three months in a group of healthy adults (n = 22). We focused on the changes in beta activity both during active grasping movement (beta suppression) and after movement termination (beta rebound). The strengths of beta suppression and rebound were similar between the baseline and follow-up measurements; intraclass correlation coefficient values (0.76-0.96) demonstrated high reproducibility. Our results indicate that the beta modulation in response to an active hand-squeezing task has excellent test-retest reliability: the natural-like active movement paradigm is suitable for evaluating the functional state of the sensorimotor cortex and can be utilized as a biomarker in clinical follow-up studies.</p>","PeriodicalId":16563,"journal":{"name":"Journal of neurophysiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/jn.00377.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The rolandic beta (13-30 Hz) rhythm recorded over the somatomotor cortices is known to be modified by movement execution and observation. Beta modulation has been considered as a biomarker of motor function in various neurological diseases, and active natural-like movements might offer a clinically feasible method to assess them. While the stability of movement-related beta modulation has been addressed during passive and highly controlled active movements, the test-retest reliability of natural-like movements has not been established. We used magnetoencephalography (MEG) to evaluate the reproducibility of movement-related sensorimotor beta modulation longitudinally over three months in a group of healthy adults (n = 22). We focused on the changes in beta activity both during active grasping movement (beta suppression) and after movement termination (beta rebound). The strengths of beta suppression and rebound were similar between the baseline and follow-up measurements; intraclass correlation coefficient values (0.76-0.96) demonstrated high reproducibility. Our results indicate that the beta modulation in response to an active hand-squeezing task has excellent test-retest reliability: the natural-like active movement paradigm is suitable for evaluating the functional state of the sensorimotor cortex and can be utilized as a biomarker in clinical follow-up studies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of neurophysiology
Journal of neurophysiology 医学-神经科学
CiteScore
4.80
自引率
8.00%
发文量
255
审稿时长
2-3 weeks
期刊介绍: The Journal of Neurophysiology publishes original articles on the function of the nervous system. All levels of function are included, from the membrane and cell to systems and behavior. Experimental approaches include molecular neurobiology, cell culture and slice preparations, membrane physiology, developmental neurobiology, functional neuroanatomy, neurochemistry, neuropharmacology, systems electrophysiology, imaging and mapping techniques, and behavioral analysis. Experimental preparations may be invertebrate or vertebrate species, including humans. Theoretical studies are acceptable if they are tied closely to the interpretation of experimental data and elucidate principles of broad interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信