Allium Macrostemon Bge. Attenuates the Cognitive Decline of Aging Mice by Enhancing BDNF/TrkB Pathway

IF 3.5 2区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Ruilin Sheng, Meihuan Zhao, Keting Pu, Yongtao Zhou, Li Zeng, Yuanyuan Chen, Ping Wang, Xiao Liu, Shijun Xu
{"title":"Allium Macrostemon Bge. Attenuates the Cognitive Decline of Aging Mice by Enhancing BDNF/TrkB Pathway","authors":"Ruilin Sheng,&nbsp;Meihuan Zhao,&nbsp;Keting Pu,&nbsp;Yongtao Zhou,&nbsp;Li Zeng,&nbsp;Yuanyuan Chen,&nbsp;Ping Wang,&nbsp;Xiao Liu,&nbsp;Shijun Xu","doi":"10.1002/fsn3.70010","DOIUrl":null,"url":null,"abstract":"<p><i>Allium macrostemon</i> Bge. (AM) is a widely utilized culinary spice recognized for its numerous health-promoting properties. Aging-related cognitive impairment (ARCI) represents a significant global health concern during the aging process. However, the potential of AM to attenuate ARCI has not been investigated. This work aims to reveal the effects and potential mechanisms of the water extraction of AM (WEAM) in alleviating ARCI, with a particular emphasis on the BDNF/TrkB signaling pathway. The findings showed a significant enhancement in memory function and a reduction in hippocampal neuronal damage in aging mice following treatment with WEAM, manifested by an increased spontaneous alternation rate in the Y-maze, prolonged step-through latency, and decreased number of errors in the PAT test, a shortened escape latency and increased platform swimming time and platform crossing times in the MWM test. Additionally, WEAM reduced oxidative stress, elevated the expression of proteins related to synaptic plasticity (SYN and PSD95), and activated the BDNF/TrkB signaling pathway in D-galactose-induced aging mice. To elucidate the mechanism by which WEAM alleviates ARCI, both a TrkB activator (7,8-DHF) and an inhibitor (ANA-12) were employed. The results demonstrated that the effects of WEAM on synaptic plasticity were potentiated by 7,8-DHF and diminished by ANA-12. Finally, 11 chemical compositions of WEAM were analyzed and quantified using HPLC-MS/MS, including macrostemonoside, sarsasapogenin, diosgenin, timosaponin AIII, N-p-trans-coumaroyltyramine, guanosine, adenosine, phenylalanine, adenine, arginine, and valine. These results suggest that AM may serve as a promising culinary spice for mitigating ARCI by promoting the BDNF/TrkB signaling pathway, thereby enhancing synaptic plasticity.</p>","PeriodicalId":12418,"journal":{"name":"Food Science & Nutrition","volume":"13 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsn3.70010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science & Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fsn3.70010","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Allium macrostemon Bge. (AM) is a widely utilized culinary spice recognized for its numerous health-promoting properties. Aging-related cognitive impairment (ARCI) represents a significant global health concern during the aging process. However, the potential of AM to attenuate ARCI has not been investigated. This work aims to reveal the effects and potential mechanisms of the water extraction of AM (WEAM) in alleviating ARCI, with a particular emphasis on the BDNF/TrkB signaling pathway. The findings showed a significant enhancement in memory function and a reduction in hippocampal neuronal damage in aging mice following treatment with WEAM, manifested by an increased spontaneous alternation rate in the Y-maze, prolonged step-through latency, and decreased number of errors in the PAT test, a shortened escape latency and increased platform swimming time and platform crossing times in the MWM test. Additionally, WEAM reduced oxidative stress, elevated the expression of proteins related to synaptic plasticity (SYN and PSD95), and activated the BDNF/TrkB signaling pathway in D-galactose-induced aging mice. To elucidate the mechanism by which WEAM alleviates ARCI, both a TrkB activator (7,8-DHF) and an inhibitor (ANA-12) were employed. The results demonstrated that the effects of WEAM on synaptic plasticity were potentiated by 7,8-DHF and diminished by ANA-12. Finally, 11 chemical compositions of WEAM were analyzed and quantified using HPLC-MS/MS, including macrostemonoside, sarsasapogenin, diosgenin, timosaponin AIII, N-p-trans-coumaroyltyramine, guanosine, adenosine, phenylalanine, adenine, arginine, and valine. These results suggest that AM may serve as a promising culinary spice for mitigating ARCI by promoting the BDNF/TrkB signaling pathway, thereby enhancing synaptic plasticity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Science & Nutrition
Food Science & Nutrition Agricultural and Biological Sciences-Food Science
CiteScore
7.40
自引率
5.10%
发文量
434
审稿时长
24 weeks
期刊介绍: Food Science & Nutrition is the peer-reviewed journal for rapid dissemination of research in all areas of food science and nutrition. The Journal will consider submissions of quality papers describing the results of fundamental and applied research related to all aspects of human food and nutrition, as well as interdisciplinary research that spans these two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信