Sagnik Banerjee;Mohammad S. Khan;Uddipan Nath;Santosh Kumar Mishra;Bhargav Appasani
{"title":"Skin Cancer Detection Using Terahertz Metamaterial Absorber and Machine Learning","authors":"Sagnik Banerjee;Mohammad S. Khan;Uddipan Nath;Santosh Kumar Mishra;Bhargav Appasani","doi":"10.1109/TPS.2025.3531426","DOIUrl":null,"url":null,"abstract":"This research aims to propose a terahertz metamaterial-based absorber that can sense the alterations in the enclosing medium’s refractive index. The suggested layout comprises a pair of concentric resonators made of gold, each resembling a ring in shape, and is mounted upon a substrate comprising of gallium arsenide (GaAs). The periodicity of the unit cell in this design is only <inline-formula> <tex-math>$48~\\mu $ </tex-math></inline-formula>m. At 2.47 THz, it achieves a high-quality factor (Q-factor) of 61.75 and a nearly perfect absorption of 99.50%. Parametric analyses have been performed to support the selection of the parameters used in the design. Modifications in the polarization angle do not affect the design and the absorption spectra. Because numerous biomedical samples fall within this range, the refractive index has been adjusted within the range of 1.35 to 1.39. Using the proposed sensor, 560 absorption spectra are obtained for different polarization angles, incident angles, and cell specimens of normal and cancerous skin tissue. Different machine learning algorithms have been used to classify the cells based on the absorption spectrum obtained from the proposed sensor with an accuracy of 100% and a precision and recall of 100% and 100%, respectively, on the test data. The proposed work can pave the way for future research combining machine learning and sensing at the terahertz frequency.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 2","pages":"343-350"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10870870/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
This research aims to propose a terahertz metamaterial-based absorber that can sense the alterations in the enclosing medium’s refractive index. The suggested layout comprises a pair of concentric resonators made of gold, each resembling a ring in shape, and is mounted upon a substrate comprising of gallium arsenide (GaAs). The periodicity of the unit cell in this design is only $48~\mu $ m. At 2.47 THz, it achieves a high-quality factor (Q-factor) of 61.75 and a nearly perfect absorption of 99.50%. Parametric analyses have been performed to support the selection of the parameters used in the design. Modifications in the polarization angle do not affect the design and the absorption spectra. Because numerous biomedical samples fall within this range, the refractive index has been adjusted within the range of 1.35 to 1.39. Using the proposed sensor, 560 absorption spectra are obtained for different polarization angles, incident angles, and cell specimens of normal and cancerous skin tissue. Different machine learning algorithms have been used to classify the cells based on the absorption spectrum obtained from the proposed sensor with an accuracy of 100% and a precision and recall of 100% and 100%, respectively, on the test data. The proposed work can pave the way for future research combining machine learning and sensing at the terahertz frequency.
期刊介绍:
The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.