Neutron Yield Optimization From a Palm Top Plasma Focus Device Using Lee Code

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
M. I. Nayeem;S. Biswas;M. K. Islam;M. Akel;S. Lee;M. A. Malek
{"title":"Neutron Yield Optimization From a Palm Top Plasma Focus Device Using Lee Code","authors":"M. I. Nayeem;S. Biswas;M. K. Islam;M. Akel;S. Lee;M. A. Malek","doi":"10.1109/TPS.2025.3525982","DOIUrl":null,"url":null,"abstract":"A palm top plasma focus (PF) device (100 J, 5 kV, 59 kA, ~1.5 kg) with tapered anode was demonstrated in a study earlier by (Rout et al., 2013). To simulate that device, we use the Lee code (RADPFV5.16). The computed current trace is fit to Rout’s measured current trace at 2.25 Torr deuterium (<inline-formula> <tex-math>${D} _{2}$ </tex-math></inline-formula>) gas. The best-fit values of the model parameters are found as <inline-formula> <tex-math>${f}_{m} = 0.11, f_{c} = 0.73, f_{\\text {mr}} = 0.245, f_{\\text {cr}} = 0.78$ </tex-math></inline-formula>. Having fixed these parameters, the computed neutron yields (<inline-formula> <tex-math>${Y} _{n}$ </tex-math></inline-formula>) <inline-formula> <tex-math>$6.12\\times 10^{4}, 1.72\\times 10^{4}$ </tex-math></inline-formula>, and <inline-formula> <tex-math>$0.24\\times 10^{4}$ </tex-math></inline-formula> neutrons/shot are found to be comparable with the measured values (<inline-formula> <tex-math>$5.2~\\pm ~0.8$ </tex-math></inline-formula>) <inline-formula> <tex-math>$\\times 10^{4}$ </tex-math></inline-formula>, (<inline-formula> <tex-math>$2~\\pm ~0.5$ </tex-math></inline-formula>) <inline-formula> <tex-math>$\\times 10^{4}$ </tex-math></inline-formula>, and (<inline-formula> <tex-math>$0.2~\\pm ~0.1$ </tex-math></inline-formula>) <inline-formula> <tex-math>$\\times 10^{4}$ </tex-math></inline-formula> at (2.25 Torr, 5 kV), (1.875 Torr, 4 kV), and (1.5 Torr, 3 kV), respectively. The remarkable agreement shows the reliability of the code. Numerical studies are extended with anode length and taper size optimization, corresponding to the pressure range (2–3.5) Torr of <inline-formula> <tex-math>${D} _{2}$ </tex-math></inline-formula>. The optimum <inline-formula> <tex-math>${Y} _{n}$ </tex-math></inline-formula> (<inline-formula> <tex-math>$1.56\\times 10^{5}$ </tex-math></inline-formula>) is found at 2.55 Torr which is three times greater than the highest measured value [(<inline-formula> <tex-math>$5.2~\\pm ~0.8$ </tex-math></inline-formula>) <inline-formula> <tex-math>$\\times 10^{4}$ </tex-math></inline-formula>] at 2.25 Torr, 5 kV. At this optimized configuration, using deuterium-tritium (1:1) as the operating gas, the neutron yield is computed to increase to <inline-formula> <tex-math>$10^{7}$ </tex-math></inline-formula>, about 100 times greater than the computed yield with <inline-formula> <tex-math>${D} _{2}$ </tex-math></inline-formula>. In addition, we found that reducing the stray inductance <inline-formula> <tex-math>${L} _{0}$ </tex-math></inline-formula> of the device from its present value of 30 to 16 nH, the D-D neutron yield is increased from computed value of <inline-formula> <tex-math>$1.56\\times 10^{5}$ </tex-math></inline-formula> to <inline-formula> <tex-math>$2.58\\times 10^{5}$ </tex-math></inline-formula>.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 2","pages":"293-300"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10856798/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

A palm top plasma focus (PF) device (100 J, 5 kV, 59 kA, ~1.5 kg) with tapered anode was demonstrated in a study earlier by (Rout et al., 2013). To simulate that device, we use the Lee code (RADPFV5.16). The computed current trace is fit to Rout’s measured current trace at 2.25 Torr deuterium ( ${D} _{2}$ ) gas. The best-fit values of the model parameters are found as ${f}_{m} = 0.11, f_{c} = 0.73, f_{\text {mr}} = 0.245, f_{\text {cr}} = 0.78$ . Having fixed these parameters, the computed neutron yields ( ${Y} _{n}$ ) $6.12\times 10^{4}, 1.72\times 10^{4}$ , and $0.24\times 10^{4}$ neutrons/shot are found to be comparable with the measured values ( $5.2~\pm ~0.8$ ) $\times 10^{4}$ , ( $2~\pm ~0.5$ ) $\times 10^{4}$ , and ( $0.2~\pm ~0.1$ ) $\times 10^{4}$ at (2.25 Torr, 5 kV), (1.875 Torr, 4 kV), and (1.5 Torr, 3 kV), respectively. The remarkable agreement shows the reliability of the code. Numerical studies are extended with anode length and taper size optimization, corresponding to the pressure range (2–3.5) Torr of ${D} _{2}$ . The optimum ${Y} _{n}$ ( $1.56\times 10^{5}$ ) is found at 2.55 Torr which is three times greater than the highest measured value [( $5.2~\pm ~0.8$ ) $\times 10^{4}$ ] at 2.25 Torr, 5 kV. At this optimized configuration, using deuterium-tritium (1:1) as the operating gas, the neutron yield is computed to increase to $10^{7}$ , about 100 times greater than the computed yield with ${D} _{2}$ . In addition, we found that reducing the stray inductance ${L} _{0}$ of the device from its present value of 30 to 16 nH, the D-D neutron yield is increased from computed value of $1.56\times 10^{5}$ to $2.58\times 10^{5}$ .
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信