Investigation of the Effect of High Frequency and Ambient Gas on Ignition and Damping of Barrier Discharge

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Mustafa Saglam;Fevzi Hansu
{"title":"Investigation of the Effect of High Frequency and Ambient Gas on Ignition and Damping of Barrier Discharge","authors":"Mustafa Saglam;Fevzi Hansu","doi":"10.1109/TPS.2025.3533421","DOIUrl":null,"url":null,"abstract":"Determining the ignition and damping voltage values of dielectric barrier discharge (DBD) at various frequencies and in different gas ambients is important regarding lighting techniques and various industrial applications. DBDs can be operated with sinusoidal or square-wave currents between line frequency and microwave frequencies or with special pulsed waveforms. For large-scale industrial applications, power supplies operating between 500 Hz and 500 kHz are preferred. In this study, an experimental application was carried out to determine the current and voltage parameters in the damping and ignition of DBD at various frequencies and in different gas ambients. Within the scope of the study, the supply voltage was gradually applied at certain frequencies to the cylindrical plane electrode system placed in a specially designed closed and vacuumable reactor, these experiments were also repeated in various gas environments, and the voltage-current (V–I) measurements of the system were made. According to the results, it was observed that the frequency and gas type had a significant effect on the discharge damping and ignition voltages and that increasing the frequency significantly facilitated the ignition of the DBD. Similarly, the conductivity of the ambient gas significantly reduced the ignition voltage level of the DBD.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 2","pages":"311-316"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10871181/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Determining the ignition and damping voltage values of dielectric barrier discharge (DBD) at various frequencies and in different gas ambients is important regarding lighting techniques and various industrial applications. DBDs can be operated with sinusoidal or square-wave currents between line frequency and microwave frequencies or with special pulsed waveforms. For large-scale industrial applications, power supplies operating between 500 Hz and 500 kHz are preferred. In this study, an experimental application was carried out to determine the current and voltage parameters in the damping and ignition of DBD at various frequencies and in different gas ambients. Within the scope of the study, the supply voltage was gradually applied at certain frequencies to the cylindrical plane electrode system placed in a specially designed closed and vacuumable reactor, these experiments were also repeated in various gas environments, and the voltage-current (V–I) measurements of the system were made. According to the results, it was observed that the frequency and gas type had a significant effect on the discharge damping and ignition voltages and that increasing the frequency significantly facilitated the ignition of the DBD. Similarly, the conductivity of the ambient gas significantly reduced the ignition voltage level of the DBD.
高频和环境气体对阻挡放电点火和阻尼影响的研究
确定介质阻挡放电(DBD)在不同频率和不同气体环境下的点火和阻尼电压值对于照明技术和各种工业应用非常重要。dbd可以在线频和微波频率之间的正弦波或方波电流或特殊脉冲波形下工作。对于大规模工业应用,工作在500hz和500khz之间的电源是首选。在本研究中,进行了一项实验应用,以确定在不同频率和不同气体环境下DBD阻尼和点火的电流和电压参数。在研究范围内,将一定频率的电源电压逐渐施加到放置在专门设计的密闭真空反应器中的圆柱形平面电极系统中,并在各种气体环境中重复这些实验,并对系统进行电压-电流(V-I)测量。结果表明,频率和气体类型对放电阻尼和点火电压有显著影响,增加频率显著促进了DBD的点火。同样,环境气体的导电性显著降低了DBD的点火电压水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信