Spray Coated GNP-PDMS Flexible Patch Antenna-Sensor for Wireless Wearable Applications

Atul Kumar Sharma;Anup Kumar Sharma;Ritu Sharma;Puneet Sharma;Mamta Devi Sharma
{"title":"Spray Coated GNP-PDMS Flexible Patch Antenna-Sensor for Wireless Wearable Applications","authors":"Atul Kumar Sharma;Anup Kumar Sharma;Ritu Sharma;Puneet Sharma;Mamta Devi Sharma","doi":"10.1109/TMAT.2025.3539249","DOIUrl":null,"url":null,"abstract":"This paper presents the synthesis and performance of a novel flexible patch antenna sensor based on graphene nanoplatelets (GNP) material designed to operate at the 5.8 GHz frequency, targeting wearable applications. The fabrication process employed in this chapter involved a simple yet effective spray coating method, utilizing a GNP dispersion applied with a spray gun to form a rectangular patch with a full ground plane on the PDMS substrate. This method offers the advantages of being cost-effective and scalable, making it suitable for large-scale production. The antenna's performance as a sensor was evaluated by subjecting it to different bending scenarios, mimicking both compressive (positive bending) and tensile (negative bending) strains. The resulting shifts in resonant frequency under these conditions offered important information about the sensor's sensitivity. The practical applicability of the antenna sensor was demonstrated through human limb motion detection experiments, specifically tracking wrist movements. The sensor's ability to detect upward and downward wrist motions through variations in the normalized frequency output highlights its potential for real-world wearable applications. In addition to its promising performance, the operation of this antenna within the Industrial/Scientific/Medical (ISM) band at 5.8 GHz opens up a range of potential applications.","PeriodicalId":100642,"journal":{"name":"IEEE Transactions on Materials for Electron Devices","volume":"2 ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Materials for Electron Devices","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10877762/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the synthesis and performance of a novel flexible patch antenna sensor based on graphene nanoplatelets (GNP) material designed to operate at the 5.8 GHz frequency, targeting wearable applications. The fabrication process employed in this chapter involved a simple yet effective spray coating method, utilizing a GNP dispersion applied with a spray gun to form a rectangular patch with a full ground plane on the PDMS substrate. This method offers the advantages of being cost-effective and scalable, making it suitable for large-scale production. The antenna's performance as a sensor was evaluated by subjecting it to different bending scenarios, mimicking both compressive (positive bending) and tensile (negative bending) strains. The resulting shifts in resonant frequency under these conditions offered important information about the sensor's sensitivity. The practical applicability of the antenna sensor was demonstrated through human limb motion detection experiments, specifically tracking wrist movements. The sensor's ability to detect upward and downward wrist motions through variations in the normalized frequency output highlights its potential for real-world wearable applications. In addition to its promising performance, the operation of this antenna within the Industrial/Scientific/Medical (ISM) band at 5.8 GHz opens up a range of potential applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信