Three-branch feature enhancement and fusion network for focal cortical dysplasia lesions segmentation using multimodal imaging

IF 3.5 3区 医学 Q2 NEUROSCIENCES
Manli Zhang , Hao Yu , Gongpeng Cao , Jinguo Huang , Yintao Cheng , Wenjing Zhang , Xiaotong Yuan , Rui Yang , Qiunan Li , Lixin Cai , Guixia Kang
{"title":"Three-branch feature enhancement and fusion network for focal cortical dysplasia lesions segmentation using multimodal imaging","authors":"Manli Zhang ,&nbsp;Hao Yu ,&nbsp;Gongpeng Cao ,&nbsp;Jinguo Huang ,&nbsp;Yintao Cheng ,&nbsp;Wenjing Zhang ,&nbsp;Xiaotong Yuan ,&nbsp;Rui Yang ,&nbsp;Qiunan Li ,&nbsp;Lixin Cai ,&nbsp;Guixia Kang","doi":"10.1016/j.brainresbull.2025.111268","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Conventional multimodal imaging, including MRI and fluorodeoxyglucose positron emission tomography (FDG-PET), has difficulty in accurately detecting subtle or blurred focal cortical dysplasia (FCD) lesions. Morphometric maps assist localization by highlighting abnormal regions, whereas wavelet-filtered images emphasize texture and edge details. Therefore, we propose a three-branch feature enhancement and fusion network (TBFEF-Net) that integrates conventional multimodal imaging, morphometric maps, and wavelet-filtered images to enhance the accuracy of FCD localization.</div></div><div><h3>Methods</h3><div>The proposed TBFEF-Net comprises a semantic segmentation backbone, a cross-branch feature enhancement (CFE) module, and a multi-feature fusion (MFF) module. In the semantic segmentation backbone, three UNet-based branches separately extract semantic features from conventional multimodal imaging, morphometric maps, and wavelet-filtered images. In the encoding stage, the CFE incorporates a residual-based convolutional block attention module (CBAM) to aggregate features from all branches, enhancing the feature representation of FCD lesions. While in the decoding stage, the MFF integrates edge detail features from the wavelet-filtered imaging branch into the conventional multimodal imaging branch, enhancing the ability to capture lesion edges. As a result, this approach enables more precise segmentation.</div></div><div><h3>Results</h3><div>Experimental results show that TBFEF-Net surpasses several state-of-the-art methods in FCD segmentation. In the primary cohort, the Dice and sensitivity reached 59.73 % and 67.13 %, respectively, while in the open cohort, the Dice and sensitivity were 54.67 % and 54.81 %, respectively.</div></div><div><h3>Significance</h3><div>We introduced wavelet-filtered images for the first time in FCD segmentation, offering a novel approach and perspective for FCD lesions localization.</div></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"222 ","pages":"Article 111268"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923025000802","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

Conventional multimodal imaging, including MRI and fluorodeoxyglucose positron emission tomography (FDG-PET), has difficulty in accurately detecting subtle or blurred focal cortical dysplasia (FCD) lesions. Morphometric maps assist localization by highlighting abnormal regions, whereas wavelet-filtered images emphasize texture and edge details. Therefore, we propose a three-branch feature enhancement and fusion network (TBFEF-Net) that integrates conventional multimodal imaging, morphometric maps, and wavelet-filtered images to enhance the accuracy of FCD localization.

Methods

The proposed TBFEF-Net comprises a semantic segmentation backbone, a cross-branch feature enhancement (CFE) module, and a multi-feature fusion (MFF) module. In the semantic segmentation backbone, three UNet-based branches separately extract semantic features from conventional multimodal imaging, morphometric maps, and wavelet-filtered images. In the encoding stage, the CFE incorporates a residual-based convolutional block attention module (CBAM) to aggregate features from all branches, enhancing the feature representation of FCD lesions. While in the decoding stage, the MFF integrates edge detail features from the wavelet-filtered imaging branch into the conventional multimodal imaging branch, enhancing the ability to capture lesion edges. As a result, this approach enables more precise segmentation.

Results

Experimental results show that TBFEF-Net surpasses several state-of-the-art methods in FCD segmentation. In the primary cohort, the Dice and sensitivity reached 59.73 % and 67.13 %, respectively, while in the open cohort, the Dice and sensitivity were 54.67 % and 54.81 %, respectively.

Significance

We introduced wavelet-filtered images for the first time in FCD segmentation, offering a novel approach and perspective for FCD lesions localization.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Research Bulletin
Brain Research Bulletin 医学-神经科学
CiteScore
6.90
自引率
2.60%
发文量
253
审稿时长
67 days
期刊介绍: The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信