Fatemeh Aghababaei , David Julian McClements , Marc Pignitter , Milad Hadidi
{"title":"Plant protein edible inks: Upgrading from 3D to 4D food printing","authors":"Fatemeh Aghababaei , David Julian McClements , Marc Pignitter , Milad Hadidi","doi":"10.1016/j.fochx.2025.102280","DOIUrl":null,"url":null,"abstract":"<div><div>The utilization of plant proteins to formulate edible inks for 3D/4D food printing applications may help address challenges linked to food sustainability, personalized nutrition, and security. We investigate the suitability of various plant proteins for this purpose, including their molecular, functional, and nutritional attributes. Furthermore, we examine the potential of plant protein-based edible inks in 4D printing applications, where the shape or other properties of a material change over time, enabling controlled release profiles and texture modulations. We also discuss the environmental implications, regulatory considerations, and consumer acceptance of plant-based 3D/4D printed foods.</div><div>Pea and soy proteins are widely used as inks for 3D/4D food printing applications due to their excellent structure-forming abilities, as well as their functional and nutritional properties. However, solely plant protein-based inks often lack essential characteristics required for optimal performance. Their properties can be enhanced by incorporating other food ingredients, such as polysaccharides and polyphenols. As this emerging field holds promise for addressing multiple global food-related challenges, it necessitates interdisciplinary collaboration and ongoing research to unlock its full potential.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"26 ","pages":"Article 102280"},"PeriodicalIF":6.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157525001270","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The utilization of plant proteins to formulate edible inks for 3D/4D food printing applications may help address challenges linked to food sustainability, personalized nutrition, and security. We investigate the suitability of various plant proteins for this purpose, including their molecular, functional, and nutritional attributes. Furthermore, we examine the potential of plant protein-based edible inks in 4D printing applications, where the shape or other properties of a material change over time, enabling controlled release profiles and texture modulations. We also discuss the environmental implications, regulatory considerations, and consumer acceptance of plant-based 3D/4D printed foods.
Pea and soy proteins are widely used as inks for 3D/4D food printing applications due to their excellent structure-forming abilities, as well as their functional and nutritional properties. However, solely plant protein-based inks often lack essential characteristics required for optimal performance. Their properties can be enhanced by incorporating other food ingredients, such as polysaccharides and polyphenols. As this emerging field holds promise for addressing multiple global food-related challenges, it necessitates interdisciplinary collaboration and ongoing research to unlock its full potential.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.