Alessio Mentani , Laura Govoni , Christophe Gaudin , Phil Watson , Yinghui Tian
{"title":"Predicting the uniaxial capacity of plate anchors in spatially variable clay using metamodels","authors":"Alessio Mentani , Laura Govoni , Christophe Gaudin , Phil Watson , Yinghui Tian","doi":"10.1016/j.compgeo.2025.107157","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the effect of spatial variability in undrained shear strength on the uniaxial capacity of a deeply embedded plate anchor. The study was undertaken using the random field finite element method, and the results show that the ultimate uniaxial capacity is significantly influenced by strength heterogeneity, which is influenced by the different mobilised failure mechanisms and leads to a widely distributed probability of failure. Interpretation of the results also shows that it is possible to relate the statistical distribution of an operative undrained shear strength to the probability of failure of the plate, using close to constant uniaxial capacity factors. These findings simplify the assessment of plate capacity to the determination of the operative undrained shear strength, without needing to resort to computationally expensive finite element analyses. Additionally, the operative undrained shear strength obtained from random field modelling can be accurately emulated by metamodelling, which can then be used to correlate the input variables to the statistical distribution of the operative undrained shear strength. Through reference to a specific foundation geometry and set of soil variability parameters, this paper illustrates the potential of a simple and computationally cost-effective analytical procedure which, by combining random field finite element analyses and metamodels, relates site-specific field input variables to the probability of failure of a deeply embedded plate anchor in a spatially variable clay.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"182 ","pages":"Article 107157"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X25001065","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the effect of spatial variability in undrained shear strength on the uniaxial capacity of a deeply embedded plate anchor. The study was undertaken using the random field finite element method, and the results show that the ultimate uniaxial capacity is significantly influenced by strength heterogeneity, which is influenced by the different mobilised failure mechanisms and leads to a widely distributed probability of failure. Interpretation of the results also shows that it is possible to relate the statistical distribution of an operative undrained shear strength to the probability of failure of the plate, using close to constant uniaxial capacity factors. These findings simplify the assessment of plate capacity to the determination of the operative undrained shear strength, without needing to resort to computationally expensive finite element analyses. Additionally, the operative undrained shear strength obtained from random field modelling can be accurately emulated by metamodelling, which can then be used to correlate the input variables to the statistical distribution of the operative undrained shear strength. Through reference to a specific foundation geometry and set of soil variability parameters, this paper illustrates the potential of a simple and computationally cost-effective analytical procedure which, by combining random field finite element analyses and metamodels, relates site-specific field input variables to the probability of failure of a deeply embedded plate anchor in a spatially variable clay.
期刊介绍:
The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.