Predicting the uniaxial capacity of plate anchors in spatially variable clay using metamodels

IF 5.3 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Alessio Mentani , Laura Govoni , Christophe Gaudin , Phil Watson , Yinghui Tian
{"title":"Predicting the uniaxial capacity of plate anchors in spatially variable clay using metamodels","authors":"Alessio Mentani ,&nbsp;Laura Govoni ,&nbsp;Christophe Gaudin ,&nbsp;Phil Watson ,&nbsp;Yinghui Tian","doi":"10.1016/j.compgeo.2025.107157","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the effect of spatial variability in undrained shear strength on the uniaxial capacity of a deeply embedded plate anchor. The study was undertaken using the random field finite element method, and the results show that the ultimate uniaxial capacity is significantly influenced by strength heterogeneity, which is influenced by the different mobilised failure mechanisms and leads to a widely distributed probability of failure. Interpretation of the results also shows that it is possible to relate the statistical distribution of an operative undrained shear strength to the probability of failure of the plate, using close to constant uniaxial capacity factors. These findings simplify the assessment of plate capacity to the determination of the operative undrained shear strength, without needing to resort to computationally expensive finite element analyses. Additionally, the operative undrained shear strength obtained from random field modelling can be accurately emulated by metamodelling, which can then be used to correlate the input variables to the statistical distribution of the operative undrained shear strength. Through reference to a specific foundation geometry and set of soil variability parameters, this paper illustrates the potential of a simple and computationally cost-effective analytical procedure which, by combining random field finite element analyses and metamodels, relates site-specific field input variables to the probability of failure of a deeply embedded plate anchor in a spatially variable clay.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"182 ","pages":"Article 107157"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X25001065","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the effect of spatial variability in undrained shear strength on the uniaxial capacity of a deeply embedded plate anchor. The study was undertaken using the random field finite element method, and the results show that the ultimate uniaxial capacity is significantly influenced by strength heterogeneity, which is influenced by the different mobilised failure mechanisms and leads to a widely distributed probability of failure. Interpretation of the results also shows that it is possible to relate the statistical distribution of an operative undrained shear strength to the probability of failure of the plate, using close to constant uniaxial capacity factors. These findings simplify the assessment of plate capacity to the determination of the operative undrained shear strength, without needing to resort to computationally expensive finite element analyses. Additionally, the operative undrained shear strength obtained from random field modelling can be accurately emulated by metamodelling, which can then be used to correlate the input variables to the statistical distribution of the operative undrained shear strength. Through reference to a specific foundation geometry and set of soil variability parameters, this paper illustrates the potential of a simple and computationally cost-effective analytical procedure which, by combining random field finite element analyses and metamodels, relates site-specific field input variables to the probability of failure of a deeply embedded plate anchor in a spatially variable clay.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers and Geotechnics
Computers and Geotechnics 地学-地球科学综合
CiteScore
9.10
自引率
15.10%
发文量
438
审稿时长
45 days
期刊介绍: The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信