Investigating mechanisms underlying the development of paralysis symptom in a model of MS

IF 3.5 3区 医学 Q2 NEUROSCIENCES
Shruti Gupta , Sreejita Arnab , Noah Silver-Beck , Kayla L. Nguyen , John R. Bethea
{"title":"Investigating mechanisms underlying the development of paralysis symptom in a model of MS","authors":"Shruti Gupta ,&nbsp;Sreejita Arnab ,&nbsp;Noah Silver-Beck ,&nbsp;Kayla L. Nguyen ,&nbsp;John R. Bethea","doi":"10.1016/j.brainresbull.2025.111275","DOIUrl":null,"url":null,"abstract":"<div><div>Multiple sclerosis (MS) is an autoimmune neurodegenerative disorder with approximately 80 % of patients suffering from pain and 50 % from paralysis. Using a rodent model for MS, experimental autoimmune encephalomyelitis (EAE), researchers have predominately investigated paralysis/motor disease as the clinical symptom of EAE with fewer studying MS/EAE pain. However, in EAE, all mice exhibit a pain like phenotype and only a subset progresses to paralysis. Despite extensive research characterizing the disease pathology, the etiology that contributes to the range of pain and motor symptom occurrence in MS remains understudied. This is the first study to dissect MS symptom pathophysiology, using the non-PTX EAE model, in mice that experience mechanical hypersensitivity (pain-like phenotype) with and without paralysis. We found that mechanical hypersensitivity experienced by mice with or without paralysis is comparable between the two groups, irrespective of sex. In addition, there is a significant increase in the activation and infiltration of immune cells, demyelination, and heightened protein expression of B cell chemoattractant CXCL13 within the spinal cord of mice exhibiting mechanical hypersensitivity and paralysis, compared to mice only experiencing mechanical hypersensitivity.</div></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"223 ","pages":"Article 111275"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923025000875","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple sclerosis (MS) is an autoimmune neurodegenerative disorder with approximately 80 % of patients suffering from pain and 50 % from paralysis. Using a rodent model for MS, experimental autoimmune encephalomyelitis (EAE), researchers have predominately investigated paralysis/motor disease as the clinical symptom of EAE with fewer studying MS/EAE pain. However, in EAE, all mice exhibit a pain like phenotype and only a subset progresses to paralysis. Despite extensive research characterizing the disease pathology, the etiology that contributes to the range of pain and motor symptom occurrence in MS remains understudied. This is the first study to dissect MS symptom pathophysiology, using the non-PTX EAE model, in mice that experience mechanical hypersensitivity (pain-like phenotype) with and without paralysis. We found that mechanical hypersensitivity experienced by mice with or without paralysis is comparable between the two groups, irrespective of sex. In addition, there is a significant increase in the activation and infiltration of immune cells, demyelination, and heightened protein expression of B cell chemoattractant CXCL13 within the spinal cord of mice exhibiting mechanical hypersensitivity and paralysis, compared to mice only experiencing mechanical hypersensitivity.
研究多发性硬化症模型中瘫痪症状发展的机制
多发性硬化症(MS)是一种自身免疫性神经退行性疾病,大约80% %的患者患有疼痛,50% %的患者患有瘫痪。利用MS的啮齿动物模型,实验性自身免疫性脑脊髓炎(EAE),研究人员主要研究瘫痪/运动疾病作为EAE的临床症状,较少研究MS/EAE疼痛。然而,在EAE中,所有小鼠都表现出疼痛样表型,只有一小部分发展为瘫痪。尽管广泛的研究表征了疾病病理,但导致MS疼痛和运动症状发生范围的病因学仍未得到充分研究。这是第一个使用非ptx EAE模型解剖MS症状病理生理学的研究,在经历机械超敏反应(疼痛样表型)的小鼠中,伴有或不伴有瘫痪。我们发现,不论性别,有或没有瘫痪的小鼠所经历的机械超敏反应在两组之间是相似的。此外,与仅发生机械超敏反应的小鼠相比,出现机械超敏反应和瘫痪的小鼠脊髓内免疫细胞的激活和浸润、脱髓鞘和B细胞化学引诱物CXCL13的蛋白表达显著增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Research Bulletin
Brain Research Bulletin 医学-神经科学
CiteScore
6.90
自引率
2.60%
发文量
253
审稿时长
67 days
期刊介绍: The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信