Mechanism of patulin biodegradation by a reductase from Saccharomyces cerevisiae and its potential application to apple juice

IF 7 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Chao Yang , Chen Hu , Lingxuan Huang , Bangzhu Peng
{"title":"Mechanism of patulin biodegradation by a reductase from Saccharomyces cerevisiae and its potential application to apple juice","authors":"Chao Yang ,&nbsp;Chen Hu ,&nbsp;Lingxuan Huang ,&nbsp;Bangzhu Peng","doi":"10.1016/j.foodres.2025.116066","DOIUrl":null,"url":null,"abstract":"<div><div>Bioenzymatic degradation exhibits great potential for mycotoxins removal. So far, little is known about patulin (PAT) degrading enzymes from <em>Saccharomyces cerevisiae</em>. Here, the degradation mechanism of PAT by a free methionine-R-sulfoxide reductase (FRMSR) from <em>S. cerevisiae</em> was investigated. The results showed that purified FRMSR had high degradability without cofactor and displayed strong substrate specificity. The optimal degradation conditions in aqueous solution were 37 °C and pH 7.0. Isothermal titration calorimetry and molecular docking suggested that the PAT degradation by FRMSR was related to the hydrogen bonds formed between amino acids with PAT. Site-specific mutagenesis indicated that the mutation of Asp151 had the most significant effect on the degradation rate. Furthermore, the addition of FRMSR successfully degraded 88.16 % of PAT in apple juice without affecting its soluble solids content, pH value, titrable acidity and total phenols. These findings could provide valuable insights into the development of PAT-degrading enzymes in apple products and their industrial applications.</div></div>","PeriodicalId":323,"journal":{"name":"Food Research International","volume":"206 ","pages":"Article 116066"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Research International","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096399692500403X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bioenzymatic degradation exhibits great potential for mycotoxins removal. So far, little is known about patulin (PAT) degrading enzymes from Saccharomyces cerevisiae. Here, the degradation mechanism of PAT by a free methionine-R-sulfoxide reductase (FRMSR) from S. cerevisiae was investigated. The results showed that purified FRMSR had high degradability without cofactor and displayed strong substrate specificity. The optimal degradation conditions in aqueous solution were 37 °C and pH 7.0. Isothermal titration calorimetry and molecular docking suggested that the PAT degradation by FRMSR was related to the hydrogen bonds formed between amino acids with PAT. Site-specific mutagenesis indicated that the mutation of Asp151 had the most significant effect on the degradation rate. Furthermore, the addition of FRMSR successfully degraded 88.16 % of PAT in apple juice without affecting its soluble solids content, pH value, titrable acidity and total phenols. These findings could provide valuable insights into the development of PAT-degrading enzymes in apple products and their industrial applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Research International
Food Research International 工程技术-食品科技
CiteScore
12.50
自引率
7.40%
发文量
1183
审稿时长
79 days
期刊介绍: Food Research International serves as a rapid dissemination platform for significant and impactful research in food science, technology, engineering, and nutrition. The journal focuses on publishing novel, high-quality, and high-impact review papers, original research papers, and letters to the editors across various disciplines in the science and technology of food. Additionally, it follows a policy of publishing special issues on topical and emergent subjects in food research or related areas. Selected, peer-reviewed papers from scientific meetings, workshops, and conferences on the science, technology, and engineering of foods are also featured in special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信