{"title":"Amphiphilic food polypeptides via moderate enzymatic hydrolysis of chickpea proteins: Bioprocessing, properties, and molecular mechanism","authors":"Ishita Ghosh , Saisai Ding , Yi Zhang","doi":"10.1016/j.foodchem.2025.143602","DOIUrl":null,"url":null,"abstract":"<div><div>Plant proteins are a promising source for producing amphiphilic polypeptides with tailored techno-functional properties to be used in various food applications, such as fat replacers. This study investigated the effects of moderate enzymatic hydrolysis on amphiphilic polypeptide generation, by understanding the relationship of bioprocess – protein structure – functionality – amphiphilicity mechanism. Compared to non-specific protease alcalase, the specific protease trypsin catalyzed the production of polypeptides with higher surface hydrophobicity and relatively high molecular weight. Trypsin-produced polypeptides exhibited significantly higher water and oil holding capacities, foaming capacities, and emulsification than alcalase-produced counterparts. Furthermore, polypeptide sequences were obtained from proteomics and used to analyze amphiphilicity using Grand Average of Hydropathy (GRAVY) scores and hydropathy plots. Trypsin produced high number of amphiphilic polypeptides with balanced hydrophilic and hydrophobic regions. Molecular dynamics (MD) simulations of selected amphiphilic polypeptides in water-oleic acid systems suggested strong hydrophobic interactions with oleic acid and stable conformations in the interface.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"478 ","pages":"Article 143602"},"PeriodicalIF":9.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814625008532","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Plant proteins are a promising source for producing amphiphilic polypeptides with tailored techno-functional properties to be used in various food applications, such as fat replacers. This study investigated the effects of moderate enzymatic hydrolysis on amphiphilic polypeptide generation, by understanding the relationship of bioprocess – protein structure – functionality – amphiphilicity mechanism. Compared to non-specific protease alcalase, the specific protease trypsin catalyzed the production of polypeptides with higher surface hydrophobicity and relatively high molecular weight. Trypsin-produced polypeptides exhibited significantly higher water and oil holding capacities, foaming capacities, and emulsification than alcalase-produced counterparts. Furthermore, polypeptide sequences were obtained from proteomics and used to analyze amphiphilicity using Grand Average of Hydropathy (GRAVY) scores and hydropathy plots. Trypsin produced high number of amphiphilic polypeptides with balanced hydrophilic and hydrophobic regions. Molecular dynamics (MD) simulations of selected amphiphilic polypeptides in water-oleic acid systems suggested strong hydrophobic interactions with oleic acid and stable conformations in the interface.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.