Jie Han, Yunpeng Wang, Jin Yu, Xiaoli Zhang, QingXia Duan, Rubo Zhang, Jing Jing, Xiaoling Zhang
{"title":"A Dual-Channel Fluorescent Probe for Accurate Diagnosis and Precise Photodynamic Killing of Bacterial Infections by Employing Dual-Mechanism Responses","authors":"Jie Han, Yunpeng Wang, Jin Yu, Xiaoli Zhang, QingXia Duan, Rubo Zhang, Jing Jing, Xiaoling Zhang","doi":"10.1021/acs.analchem.4c04877","DOIUrl":null,"url":null,"abstract":"Bacterial infections pose a huge challenge to global public health, exacerbated by the growing threat of antibiotic resistance due to overuse of antibiotics, and there is an urgent need to develop epidemiological control methods that enable accurate detection and precise treatment. In this study, we present an innovative dual-response integrated probe, <b>Nap-CefTTPy</b>, which is capable of dual-channel fluorescence imaging, synergizing with photodynamic therapy for the accurate diagnosis and precise treatment of bacterial infections. The probe has excellent selectivity for bacteria and can produce two independent spectral responses to bacteria through two different response mechanisms under a single laser excitation, achieving accurate diagnosis of dual-channel bacterial infections. At the same time, it can also produce reactive oxygen species for synergistic photodynamic therapy, which ensures the accuracy of diagnosis and treatment. In a mouse bacterial infection model, it largely promoted the wound healing of <i>S. aureus</i>-infected mice. This platform represents a significant advancement in the field, providing a novel approach for the dual-code mutual correction diagnosis and photodynamic therapy of bacterial infections.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"32 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04877","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial infections pose a huge challenge to global public health, exacerbated by the growing threat of antibiotic resistance due to overuse of antibiotics, and there is an urgent need to develop epidemiological control methods that enable accurate detection and precise treatment. In this study, we present an innovative dual-response integrated probe, Nap-CefTTPy, which is capable of dual-channel fluorescence imaging, synergizing with photodynamic therapy for the accurate diagnosis and precise treatment of bacterial infections. The probe has excellent selectivity for bacteria and can produce two independent spectral responses to bacteria through two different response mechanisms under a single laser excitation, achieving accurate diagnosis of dual-channel bacterial infections. At the same time, it can also produce reactive oxygen species for synergistic photodynamic therapy, which ensures the accuracy of diagnosis and treatment. In a mouse bacterial infection model, it largely promoted the wound healing of S. aureus-infected mice. This platform represents a significant advancement in the field, providing a novel approach for the dual-code mutual correction diagnosis and photodynamic therapy of bacterial infections.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.