Biomechanical modeling and assessment of patient positioning to facilitate spinal deformity instrumentation.

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Xiaoyu Wang, Guillaume Imbleau-Chagnon, Christiane Caouette, A Noelle Larson, Carl-Eric Aubin
{"title":"Biomechanical modeling and assessment of patient positioning to facilitate spinal deformity instrumentation.","authors":"Xiaoyu Wang, Guillaume Imbleau-Chagnon, Christiane Caouette, A Noelle Larson, Carl-Eric Aubin","doi":"10.1080/10255842.2025.2470796","DOIUrl":null,"url":null,"abstract":"<p><p>Finite element models (FEM) were built based on clinical documentation of five AIS surgical cases to simulate patient positioning and spinal instrumentation. Various patient positioning and instrumentation configurations were simulated, and the associated corrections and screw pull-out forces were analyzed. Patient prone-positioning resulted in Cobb angle reduction of over 5°. Vertical, caudal, and cephalad displacement of thoracic cushions had significant impact on thoracic kyphosis. Pelvic rotation through lower-limb extension/flexion had significant effect on lumbar lordosis. The validated FEM enabled simulations of patient positioning and spinal instrumentation. Patient positioning configurations had significant effects on deformity correction and screw pull-out forces.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-10"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2470796","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Finite element models (FEM) were built based on clinical documentation of five AIS surgical cases to simulate patient positioning and spinal instrumentation. Various patient positioning and instrumentation configurations were simulated, and the associated corrections and screw pull-out forces were analyzed. Patient prone-positioning resulted in Cobb angle reduction of over 5°. Vertical, caudal, and cephalad displacement of thoracic cushions had significant impact on thoracic kyphosis. Pelvic rotation through lower-limb extension/flexion had significant effect on lumbar lordosis. The validated FEM enabled simulations of patient positioning and spinal instrumentation. Patient positioning configurations had significant effects on deformity correction and screw pull-out forces.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信