Antimicrobial and Antibiofilm Activity of Auranofin and Its Two Derivatives Bearing Naproxen and Acetylcysteine as Ligands Against Staphylococci.

IF 4.3 2区 医学 Q1 INFECTIOUS DISEASES
Caterina Ferretti, Lorenzo Chiaverini, Noemi Poma, Andrea Dalli, Riccardo Di Leo, Laura Rindi, Alessandro Marrone, Iogann Tolbatov, Diego La Mendola, Arianna Tavanti, Tiziano Marzo, Mariagrazia Di Luca
{"title":"Antimicrobial and Antibiofilm Activity of Auranofin and Its Two Derivatives Bearing Naproxen and Acetylcysteine as Ligands Against Staphylococci.","authors":"Caterina Ferretti, Lorenzo Chiaverini, Noemi Poma, Andrea Dalli, Riccardo Di Leo, Laura Rindi, Alessandro Marrone, Iogann Tolbatov, Diego La Mendola, Arianna Tavanti, Tiziano Marzo, Mariagrazia Di Luca","doi":"10.3390/antibiotics14020118","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: The ability of bacteria to form biofilms makes them more tolerant to traditional antibiotics. Given the lack of new antibiotic development, drug repurposing offers a strategy for discovering new treatments. Auranofin (AF), a gold-based compound indicated for the treatment of rheumatoid arthritis, shows promising antibacterial activity. This study investigates the antimicrobial and antibiofilm activity of AF and its two derivatives in which the thiosugar ligand is replaced by acetylcysteine (AF-AcCys) or naproxen (AF-Napx), against <i>Staphylococcus aureus</i> and <i>Staphylococcus epidermidis</i>. <b>Methods</b>: AF was conjugated by transmetalation with either naproxen or acetylcysteine. Assessments of their stability in DMSO/H<sub>2</sub>O and lipophilicity expressed as the LogP were performed. The antimicrobial activity of AF and its analogues were investigated by broth microdilution assay to determine the minimum inhibitory concentration (MIC) and versus biofilm to obtain the minimum bactericidal biofilm concentration (MBBC) and minimum biofilm eradication concentration (MBEC). <b>Results</b>: AF derivatives were found to be stable in a DMSO/H<sub>2</sub>O mixture for 48 h. AF-Napx showed a LogP = 1.25 ± 0.22, close to AF, while AF-AcCys had a LogP = -0.95. MIC values of <i>S. aureus</i> and <i>S. epidermidis</i> were ranging from 2 µM to 0.25 µM, and ≤0.12 µM, respectively. Both AF and AF-Napx maintained efficacy against biofilm-embedded <i>S. aureus</i> and <i>S. epidermidis</i> at non-cytotoxic concentrations, with AF-Napx demonstrating lower MBBC values for <i>S. epidermidis</i>. <b>Conclusions</b>: AF, and especially its naproxen conjugate, holds potential as a therapeutic agent for treating biofilm-associated infections caused by <i>S. aureus</i> and <i>S. epidermidis</i>, particularly in device-related infections where both infection and inflammation are present.</p>","PeriodicalId":54246,"journal":{"name":"Antibiotics-Basel","volume":"14 2","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851661/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibiotics-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antibiotics14020118","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Background/Objectives: The ability of bacteria to form biofilms makes them more tolerant to traditional antibiotics. Given the lack of new antibiotic development, drug repurposing offers a strategy for discovering new treatments. Auranofin (AF), a gold-based compound indicated for the treatment of rheumatoid arthritis, shows promising antibacterial activity. This study investigates the antimicrobial and antibiofilm activity of AF and its two derivatives in which the thiosugar ligand is replaced by acetylcysteine (AF-AcCys) or naproxen (AF-Napx), against Staphylococcus aureus and Staphylococcus epidermidis. Methods: AF was conjugated by transmetalation with either naproxen or acetylcysteine. Assessments of their stability in DMSO/H2O and lipophilicity expressed as the LogP were performed. The antimicrobial activity of AF and its analogues were investigated by broth microdilution assay to determine the minimum inhibitory concentration (MIC) and versus biofilm to obtain the minimum bactericidal biofilm concentration (MBBC) and minimum biofilm eradication concentration (MBEC). Results: AF derivatives were found to be stable in a DMSO/H2O mixture for 48 h. AF-Napx showed a LogP = 1.25 ± 0.22, close to AF, while AF-AcCys had a LogP = -0.95. MIC values of S. aureus and S. epidermidis were ranging from 2 µM to 0.25 µM, and ≤0.12 µM, respectively. Both AF and AF-Napx maintained efficacy against biofilm-embedded S. aureus and S. epidermidis at non-cytotoxic concentrations, with AF-Napx demonstrating lower MBBC values for S. epidermidis. Conclusions: AF, and especially its naproxen conjugate, holds potential as a therapeutic agent for treating biofilm-associated infections caused by S. aureus and S. epidermidis, particularly in device-related infections where both infection and inflammation are present.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Antibiotics-Basel
Antibiotics-Basel Pharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
7.30
自引率
14.60%
发文量
1547
审稿时长
11 weeks
期刊介绍: Antibiotics (ISSN 2079-6382) is an open access, peer reviewed journal on all aspects of antibiotics. Antibiotics is a multi-disciplinary journal encompassing the general fields of biochemistry, chemistry, genetics, microbiology and pharmacology. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信