Modulation of the Sporulation Dynamics in the Plant-Probiotic Bacillus velezensis 83 via Carbon and Quorum-Sensing Metabolites.

IF 4.4 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Esmeralda Yazmín Soriano-Peña, Agustín Luna-Bulbarela, Sergio Andrés Cristiano-Fajardo, Enrique Galindo, Leobardo Serrano-Carreón
{"title":"Modulation of the Sporulation Dynamics in the Plant-Probiotic Bacillus velezensis 83 via Carbon and Quorum-Sensing Metabolites.","authors":"Esmeralda Yazmín Soriano-Peña, Agustín Luna-Bulbarela, Sergio Andrés Cristiano-Fajardo, Enrique Galindo, Leobardo Serrano-Carreón","doi":"10.1007/s12602-025-10482-w","DOIUrl":null,"url":null,"abstract":"<p><p>Spore-forming Bacilli, such as the plant-associated Bacillus velezensis strains, are widely used as probiotics, known for their safety and substantial health benefits for both animal and plant species. Through differentiation pathways mediated by quorum-sensing metabolites (QSMs), these bacteria develop multiple isogenic subpopulations with distinct phenotypes and ecological functions, including motile cells, matrix-producing/cannibalistic cells, competent cells, spores, and others. However, the heterogeneity in Bacillus populations is a significant limitation for the development of spore-based probiotics, as nutrients supplied during fermentation are consumed through non-target pathways. One of these pathways is the generation of overflow metabolites (OMs), including acetoin and 2,3-butanediol. This study elucidates, using a 2<sup>3</sup> full factorial experimental design, the individual effects of OMs, QSMs, and their interactions on the sporulation dynamics and subpopulation distribution of B. velezensis 83. The results showed that OMs play a relevant role as external reserves of carbon and energy during in vitro nutrient limitation scenarios, significantly affecting sporulation dynamics. OMs improve sporulation efficiency and reduce cell autolysis, but they also decrease cellular synchronization and extend the period of spore formation. Although QSMs significantly increase sporulation synchronization, the desynchronization caused by OMs cannot be mitigated even with the addition of autoinducer QSM pro-sporulation molecules, including competence and sporulation stimulating factor \"CSF\" and cyclic lipopeptides. Indeed, the interaction effect between OMs and QSMs displays antagonism on sporulation efficiency. Modulating the levels of OMs and QSMs is a potential strategy for regulating the distribution of subpopulations within Bacillus cultures.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-025-10482-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spore-forming Bacilli, such as the plant-associated Bacillus velezensis strains, are widely used as probiotics, known for their safety and substantial health benefits for both animal and plant species. Through differentiation pathways mediated by quorum-sensing metabolites (QSMs), these bacteria develop multiple isogenic subpopulations with distinct phenotypes and ecological functions, including motile cells, matrix-producing/cannibalistic cells, competent cells, spores, and others. However, the heterogeneity in Bacillus populations is a significant limitation for the development of spore-based probiotics, as nutrients supplied during fermentation are consumed through non-target pathways. One of these pathways is the generation of overflow metabolites (OMs), including acetoin and 2,3-butanediol. This study elucidates, using a 23 full factorial experimental design, the individual effects of OMs, QSMs, and their interactions on the sporulation dynamics and subpopulation distribution of B. velezensis 83. The results showed that OMs play a relevant role as external reserves of carbon and energy during in vitro nutrient limitation scenarios, significantly affecting sporulation dynamics. OMs improve sporulation efficiency and reduce cell autolysis, but they also decrease cellular synchronization and extend the period of spore formation. Although QSMs significantly increase sporulation synchronization, the desynchronization caused by OMs cannot be mitigated even with the addition of autoinducer QSM pro-sporulation molecules, including competence and sporulation stimulating factor "CSF" and cyclic lipopeptides. Indeed, the interaction effect between OMs and QSMs displays antagonism on sporulation efficiency. Modulating the levels of OMs and QSMs is a potential strategy for regulating the distribution of subpopulations within Bacillus cultures.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Probiotics and Antimicrobial Proteins
Probiotics and Antimicrobial Proteins BIOTECHNOLOGY & APPLIED MICROBIOLOGYMICROB-MICROBIOLOGY
CiteScore
11.30
自引率
6.10%
发文量
140
期刊介绍: Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信