Complex Spiking Neural Network Evaluated by Injury Resistance Under Stochastic Attacks.

IF 2.7 3区 医学 Q3 NEUROSCIENCES
Lei Guo, Chongming Li, Huan Liu, Yihua Song
{"title":"Complex Spiking Neural Network Evaluated by Injury Resistance Under Stochastic Attacks.","authors":"Lei Guo, Chongming Li, Huan Liu, Yihua Song","doi":"10.3390/brainsci15020186","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Brain-inspired models are commonly employed for artificial intelligence. However, the complex environment can hinder the performance of electronic equipment. Therefore, enhancing the injury resistance of brain-inspired models is a crucial issue. Human brains have self-adaptive abilities under injury, so drawing on the advantages of the human brain to construct a brain-inspired model is intended to enhance its injury resistance. But current brain-inspired models still lack bio-plausibility, meaning they do not sufficiently draw on real neural systems' structure or function.</p><p><strong>Methods: </strong>To address this challenge, this paper proposes the complex spiking neural network (Com-SNN) as a brain-inspired model, in which the topology is inspired by the topological characteristics of biological functional brain networks, the nodes are Izhikevich neuron models, and the edges are synaptic plasticity models with time delay co-regulated by excitatory synapses and inhibitory synapses. To evaluate the injury resistance of the Com-SNN, two injury-resistance metrics are investigated and compared with SNNs with alternative topologies under the stochastic removal of neuron models to simulate the consequence of stochastic attacks. In addition, the injury-resistance mechanism of brain-inspired models remains unclear, and revealing the mechanism is crucial for understanding the development of SNNs with injury resistance. To address this challenge, this paper analyzes the synaptic plasticity dynamic regulation and dynamic topological characteristics of the Com-SNN under stochastic attacks.</p><p><strong>Results: </strong>The experimental results indicate that the injury resistance of the Com-SNN is superior to that of other SNNs, demonstrating that our results can help improve the injury resistance of SNNs.</p><p><strong>Conclusions: </strong>Our results imply that synaptic plasticity is an intrinsic element impacting injury resistance, and that network topology is another element that impacts injury resistance.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852915/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15020186","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Brain-inspired models are commonly employed for artificial intelligence. However, the complex environment can hinder the performance of electronic equipment. Therefore, enhancing the injury resistance of brain-inspired models is a crucial issue. Human brains have self-adaptive abilities under injury, so drawing on the advantages of the human brain to construct a brain-inspired model is intended to enhance its injury resistance. But current brain-inspired models still lack bio-plausibility, meaning they do not sufficiently draw on real neural systems' structure or function.

Methods: To address this challenge, this paper proposes the complex spiking neural network (Com-SNN) as a brain-inspired model, in which the topology is inspired by the topological characteristics of biological functional brain networks, the nodes are Izhikevich neuron models, and the edges are synaptic plasticity models with time delay co-regulated by excitatory synapses and inhibitory synapses. To evaluate the injury resistance of the Com-SNN, two injury-resistance metrics are investigated and compared with SNNs with alternative topologies under the stochastic removal of neuron models to simulate the consequence of stochastic attacks. In addition, the injury-resistance mechanism of brain-inspired models remains unclear, and revealing the mechanism is crucial for understanding the development of SNNs with injury resistance. To address this challenge, this paper analyzes the synaptic plasticity dynamic regulation and dynamic topological characteristics of the Com-SNN under stochastic attacks.

Results: The experimental results indicate that the injury resistance of the Com-SNN is superior to that of other SNNs, demonstrating that our results can help improve the injury resistance of SNNs.

Conclusions: Our results imply that synaptic plasticity is an intrinsic element impacting injury resistance, and that network topology is another element that impacts injury resistance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Sciences
Brain Sciences Neuroscience-General Neuroscience
CiteScore
4.80
自引率
9.10%
发文量
1472
审稿时长
18.71 days
期刊介绍: Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信