Henry Tan, Devon J Griggs, Lucas Chen, Kahte Adele Culevski, Kathryn Floerchinger, Alissa Phutirat, Gabe Koh, Nels Schimek, Pierre D Mourad
{"title":"Diagnostic ultrasound enhances, then reduces, exogenously induced brain activity of mice.","authors":"Henry Tan, Devon J Griggs, Lucas Chen, Kahte Adele Culevski, Kathryn Floerchinger, Alissa Phutirat, Gabe Koh, Nels Schimek, Pierre D Mourad","doi":"10.3389/fnhum.2024.1509432","DOIUrl":null,"url":null,"abstract":"<p><p>Transcranially delivered diagnostic ultrasound (tDUS) applied to the human brain can modulate those brains such that they became more receptive to external stimulation relative to sham ultrasound exposure. Here, we sought to directly measure the effect of tDUS on mouse brain activity subjected to an external stimulation-a blinking light. Using electrocorticography, we observed a substantial increase in median brain activity due to tDUS plus a blinking light relative to baseline and relative to sham tDUS plus a blinking light. Subsequent brain activity decreased after cessation of tDUS but with continuation of the blinking light, though it remained above that demonstrated by mice exposed to only a blinking light. In a separate experiment, we showed that tDUS alone, without a blinking light, had no observable effect on median brain activity, but upon its cessation, brain activity decreased. These results demonstrate that <i>simultaneous</i> exposure to tDUS and blinking light can increase the receptivity of the visual cortex of mice exposed to that light, and that <i>prior</i> exposure to tDUS can reduce subsequent brain activity. In each case, these results are consistent with published data. Our results on mice echo published human results but do not directly explain them, since their test subjects received less intense diagnostic ultrasound than did our mice. Given the near ubiquity of diagnostic ultrasound systems, further progress along this line of research could one day lead to the widespread use of <i>diagnostic</i> ultrasound to intentionally modulate human brain function during exogenous stimulation.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"18 ","pages":"1509432"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850526/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Human Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnhum.2024.1509432","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Transcranially delivered diagnostic ultrasound (tDUS) applied to the human brain can modulate those brains such that they became more receptive to external stimulation relative to sham ultrasound exposure. Here, we sought to directly measure the effect of tDUS on mouse brain activity subjected to an external stimulation-a blinking light. Using electrocorticography, we observed a substantial increase in median brain activity due to tDUS plus a blinking light relative to baseline and relative to sham tDUS plus a blinking light. Subsequent brain activity decreased after cessation of tDUS but with continuation of the blinking light, though it remained above that demonstrated by mice exposed to only a blinking light. In a separate experiment, we showed that tDUS alone, without a blinking light, had no observable effect on median brain activity, but upon its cessation, brain activity decreased. These results demonstrate that simultaneous exposure to tDUS and blinking light can increase the receptivity of the visual cortex of mice exposed to that light, and that prior exposure to tDUS can reduce subsequent brain activity. In each case, these results are consistent with published data. Our results on mice echo published human results but do not directly explain them, since their test subjects received less intense diagnostic ultrasound than did our mice. Given the near ubiquity of diagnostic ultrasound systems, further progress along this line of research could one day lead to the widespread use of diagnostic ultrasound to intentionally modulate human brain function during exogenous stimulation.
期刊介绍:
Frontiers in Human Neuroscience is a first-tier electronic journal devoted to understanding the brain mechanisms supporting cognitive and social behavior in humans, and how these mechanisms might be altered in disease states. The last 25 years have seen an explosive growth in both the methods and the theoretical constructs available to study the human brain. Advances in electrophysiological, neuroimaging, neuropsychological, psychophysical, neuropharmacological and computational approaches have provided key insights into the mechanisms of a broad range of human behaviors in both health and disease. Work in human neuroscience ranges from the cognitive domain, including areas such as memory, attention, language and perception to the social domain, with this last subject addressing topics, such as interpersonal interactions, social discourse and emotional regulation. How these processes unfold during development, mature in adulthood and often decline in aging, and how they are altered in a host of developmental, neurological and psychiatric disorders, has become increasingly amenable to human neuroscience research approaches. Work in human neuroscience has influenced many areas of inquiry ranging from social and cognitive psychology to economics, law and public policy. Accordingly, our journal will provide a forum for human research spanning all areas of human cognitive, social, developmental and translational neuroscience using any research approach.