Architecturally Mediated Allostasis and Neurosustainability: A Proposed Theoretical Framework for the Impact of the Built Environment on Neurocognitive Health.

IF 2.7 3区 医学 Q3 NEUROSCIENCES
Cleo Valentine, Heather Mitcheltree, Isabelle A K Sjövall, Mohamed Hesham Khalil
{"title":"Architecturally Mediated Allostasis and Neurosustainability: A Proposed Theoretical Framework for the Impact of the Built Environment on Neurocognitive Health.","authors":"Cleo Valentine, Heather Mitcheltree, Isabelle A K Sjövall, Mohamed Hesham Khalil","doi":"10.3390/brainsci15020201","DOIUrl":null,"url":null,"abstract":"<p><p>The global rise in mental health-related disorders represents a significant health and wellbeing challenge, imposing a substantial social and economic burden on individuals, communities, and healthcare systems. According to the World Health Organization, one in four people globally will be affected by mental or neurological disorders at some point in their lives, highlighting a significant global health concern that warrants carefully considered and innovative responses. While mental health challenges arise from complex, multifaceted factors, emerging research indicates that the built environment-the architecture of our homes, workplaces, and public spaces-may exert a critical but underappreciated influence on mental health outcomes. This paper outlines a novel theoretical framework for how visual stressors in the built environment might trigger neurophysiological stress responses via the HPA and SAM axes, potentially contributing over time to allostatic load. In this paper, it is proposed that chronic physiological strain can alter neuroplastic processes and neurogenesis in key brain regions-such as the hippocampus, prefrontal cortex (PFC), anterior cingulate cortex (ACC), and amygdala-thereby affecting cognitive health, emotional regulation, and overall mental wellbeing. Drawing on the principle of neurosustainability, this paper suggests that long-term exposure to stress-inducing environments may create feedback loops, particularly involving the amygdala, that have downstream effects on other brain areas and may be linked to adverse mental health outcomes such as depression. By presenting this framework, this paper aims to inspire further inquiry and applied experimental research into the intersection of neurophysiology, mental health, and the built environment, with a particular emphasis on rigorous testing and validation of the proposed mechanisms, that may then be translated into practical architectural design strategies for supporting health and wellbeing. In doing so, it is hoped that this work may contribute to a more holistic approach to improving mental health that integrates the creation of nurturing, resilient spaces into the broader public health agenda.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853682/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15020201","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The global rise in mental health-related disorders represents a significant health and wellbeing challenge, imposing a substantial social and economic burden on individuals, communities, and healthcare systems. According to the World Health Organization, one in four people globally will be affected by mental or neurological disorders at some point in their lives, highlighting a significant global health concern that warrants carefully considered and innovative responses. While mental health challenges arise from complex, multifaceted factors, emerging research indicates that the built environment-the architecture of our homes, workplaces, and public spaces-may exert a critical but underappreciated influence on mental health outcomes. This paper outlines a novel theoretical framework for how visual stressors in the built environment might trigger neurophysiological stress responses via the HPA and SAM axes, potentially contributing over time to allostatic load. In this paper, it is proposed that chronic physiological strain can alter neuroplastic processes and neurogenesis in key brain regions-such as the hippocampus, prefrontal cortex (PFC), anterior cingulate cortex (ACC), and amygdala-thereby affecting cognitive health, emotional regulation, and overall mental wellbeing. Drawing on the principle of neurosustainability, this paper suggests that long-term exposure to stress-inducing environments may create feedback loops, particularly involving the amygdala, that have downstream effects on other brain areas and may be linked to adverse mental health outcomes such as depression. By presenting this framework, this paper aims to inspire further inquiry and applied experimental research into the intersection of neurophysiology, mental health, and the built environment, with a particular emphasis on rigorous testing and validation of the proposed mechanisms, that may then be translated into practical architectural design strategies for supporting health and wellbeing. In doing so, it is hoped that this work may contribute to a more holistic approach to improving mental health that integrates the creation of nurturing, resilient spaces into the broader public health agenda.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Sciences
Brain Sciences Neuroscience-General Neuroscience
CiteScore
4.80
自引率
9.10%
发文量
1472
审稿时长
18.71 days
期刊介绍: Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信