Resveratrol Ameliorates Chronic Stress in Kennel Dogs and Mice by Regulating Gut Microbiome and Metabolome Related to Tryptophan Metabolism.

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zhaowei Bian, Ziyang Li, Hao Chang, Jun Luo, Shiyan Jian, Jie Zhang, Peixin Lin, Baichuan Deng, Jinping Deng, Lingna Zhang
{"title":"Resveratrol Ameliorates Chronic Stress in Kennel Dogs and Mice by Regulating Gut Microbiome and Metabolome Related to Tryptophan Metabolism.","authors":"Zhaowei Bian, Ziyang Li, Hao Chang, Jun Luo, Shiyan Jian, Jie Zhang, Peixin Lin, Baichuan Deng, Jinping Deng, Lingna Zhang","doi":"10.3390/antiox14020195","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic stress poses threats to the physical and psychological well-being of dogs. Resveratrol (Res) is a polyphenol with antidepressant properties and has rarely been studied in dogs. This study aimed to investigate the stress-relieving effects and underlying mechanism of Res in dogs. Dogs were fed a basal diet supplemented with Res for 35 days. The fecal microbiota of the dogs was cultured with Res in vitro. The results show that Res improved the stress-related behaviors and increased the serum levels of 5-hydroxytryptamine (5-HT), brain-derived neurotrophic factor (BDNF), immunoglobulin A, and antioxidant capacity in dogs. Res downregulated the hormones of the hypothalamic-pituitary-adrenal axis. The abundance of butyric-producing bacteria, like <i>Blautia</i>, increased, while the growth of <i>Fusobacterium</i> related to gut inflammation was inhibited in the Res group. A higher content of fecal butyric acid was observed in the Res group. The metabolome indicated that Res increased the fecal and serum levels of tryptophan (Trp) and decreased the consumption of Trp by microorganisms. A chronic unpredictable mild stress mouse model was established, and Res was administered for 35 days. The results show that Res ameliorated the stress-related behavior and increased the levels of Trp and 5-HT in the whole brains of mice. The relative mRNA expression of genes associated with the tight junction protein, aryl hydrocarbon receptor, and Trp transporters in the colon were upregulated. In conclusion, Res could ameliorate canine stress by increasing 5-HT, BDNF, and the antioxidant capacity and improving the immune function and stress response, which was attributed to the role of Res in the restructuring of gut microbiota and the modulation of tryptophan metabolism.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851397/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14020195","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic stress poses threats to the physical and psychological well-being of dogs. Resveratrol (Res) is a polyphenol with antidepressant properties and has rarely been studied in dogs. This study aimed to investigate the stress-relieving effects and underlying mechanism of Res in dogs. Dogs were fed a basal diet supplemented with Res for 35 days. The fecal microbiota of the dogs was cultured with Res in vitro. The results show that Res improved the stress-related behaviors and increased the serum levels of 5-hydroxytryptamine (5-HT), brain-derived neurotrophic factor (BDNF), immunoglobulin A, and antioxidant capacity in dogs. Res downregulated the hormones of the hypothalamic-pituitary-adrenal axis. The abundance of butyric-producing bacteria, like Blautia, increased, while the growth of Fusobacterium related to gut inflammation was inhibited in the Res group. A higher content of fecal butyric acid was observed in the Res group. The metabolome indicated that Res increased the fecal and serum levels of tryptophan (Trp) and decreased the consumption of Trp by microorganisms. A chronic unpredictable mild stress mouse model was established, and Res was administered for 35 days. The results show that Res ameliorated the stress-related behavior and increased the levels of Trp and 5-HT in the whole brains of mice. The relative mRNA expression of genes associated with the tight junction protein, aryl hydrocarbon receptor, and Trp transporters in the colon were upregulated. In conclusion, Res could ameliorate canine stress by increasing 5-HT, BDNF, and the antioxidant capacity and improving the immune function and stress response, which was attributed to the role of Res in the restructuring of gut microbiota and the modulation of tryptophan metabolism.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Antioxidants
Antioxidants Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍: Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信