Screening and Whole-Genome Analysis of Probiotic Lactic Acid Bacteria with Potential Antioxidants from Yak Milk and Dairy Products in the Qinghai-Tibet Plateau.

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Diyan Wu, Haichuan Li, Xuan Wang, Runtong Chen, Di Gong, Danfeng Long, Xiaodan Huang, Zhenchuang Tang, Ying Zhang
{"title":"Screening and Whole-Genome Analysis of Probiotic Lactic Acid Bacteria with Potential Antioxidants from Yak Milk and Dairy Products in the Qinghai-Tibet Plateau.","authors":"Diyan Wu, Haichuan Li, Xuan Wang, Runtong Chen, Di Gong, Danfeng Long, Xiaodan Huang, Zhenchuang Tang, Ying Zhang","doi":"10.3390/antiox14020173","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to isolate lactic acid bacteria (LAB) with strong antioxidant activity and potential probiotic properties from yak milk and dairy products in the Qinghai-Tibet Plateau. Initial screening of the isolates was performed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay and a hydrogen peroxide tolerance test. Subsequently, the antioxidant capacity of the isolates was assessed through five distinct assays: 2,2'-azino-bis (3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radical scavenging ability, superoxide anion radical scavenging ability, hydroxyl radical scavenging ability, a DPPH scavenging assay, and a reducing activity assay. The strains with the stronger antioxidant potential were then further evaluated for their probiotic properties. Whole-genome sequencing was conducted on <i>Lactobacillus plantarum</i> QL01. Among 1205 isolates, 9 strains exhibited potential antioxidant capabilities. Following probiotic property evaluation, QL01 was identified as a safe candidate due to its strong growth, strong adhesion ability, and resilience to acidic, bile, and simulated gastrointestinal conditions. Genome analysis revealed that most of QL01's genes were involved in carbohydrate metabolism. Further examination of antibiotic resistance and virulence factors confirmed its safety, meanwhile genes linked to adhesion and stress responses underscored its probiotic potential. In conclusion, QL01, a strong antioxidant strain, was successfully isolated, and its probiotic potential was confirmed through comprehensive in vitro and genomic analyses.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851503/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14020173","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to isolate lactic acid bacteria (LAB) with strong antioxidant activity and potential probiotic properties from yak milk and dairy products in the Qinghai-Tibet Plateau. Initial screening of the isolates was performed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay and a hydrogen peroxide tolerance test. Subsequently, the antioxidant capacity of the isolates was assessed through five distinct assays: 2,2'-azino-bis (3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radical scavenging ability, superoxide anion radical scavenging ability, hydroxyl radical scavenging ability, a DPPH scavenging assay, and a reducing activity assay. The strains with the stronger antioxidant potential were then further evaluated for their probiotic properties. Whole-genome sequencing was conducted on Lactobacillus plantarum QL01. Among 1205 isolates, 9 strains exhibited potential antioxidant capabilities. Following probiotic property evaluation, QL01 was identified as a safe candidate due to its strong growth, strong adhesion ability, and resilience to acidic, bile, and simulated gastrointestinal conditions. Genome analysis revealed that most of QL01's genes were involved in carbohydrate metabolism. Further examination of antibiotic resistance and virulence factors confirmed its safety, meanwhile genes linked to adhesion and stress responses underscored its probiotic potential. In conclusion, QL01, a strong antioxidant strain, was successfully isolated, and its probiotic potential was confirmed through comprehensive in vitro and genomic analyses.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Antioxidants
Antioxidants Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍: Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信