{"title":"Pharmacological Mechanism and Drug Research Prospects of Ginsenoside Rb1 as an Antidepressant.","authors":"Shuhui Zhuang, Fuqiang Shi, Nazzareno Cannella, Massimo Ubaldi, Roberto Ciccocioppo, Hongwu Li, Di Qin","doi":"10.3390/antiox14020238","DOIUrl":null,"url":null,"abstract":"<p><p>This review explores the antidepressant effects of ginsenoside Rb1, a natural compound in traditional Chinese medicine, and its potential for treating major depressive disorder (MDD). The aetiology of depression was reviewed up to 2024, focusing on the pathways and mechanisms through which ginsenoside Rb1 may exert its effects. Notably, ginsenoside Rb1 regulates oxidative stress and inflammatory processes while enhancing neural plasticity by downregulating miR-134 expression and alleviating depressive symptoms. Unlike traditional antidepressants that act on a single target, ginsenoside Rb1 interacts with multiple pathways, reflecting its potential for broader therapeutic application. To compensate for the current deficiency in animal experiments, clinical data, and research on the side effects of ginsenoside Rb1 in the treatment of depression, we reviewed some clinical data on the use of this component in the treatment of other diseases to explore its relevance to depression. Ginsenoside Rb1 is expected to serve as a novel antidepressant or as a complementary component in combination with other antidepressant compounds. However, further clinical trials and molecular studies are necessary to confirm its efficacy and potential side effects.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 2","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14020238","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This review explores the antidepressant effects of ginsenoside Rb1, a natural compound in traditional Chinese medicine, and its potential for treating major depressive disorder (MDD). The aetiology of depression was reviewed up to 2024, focusing on the pathways and mechanisms through which ginsenoside Rb1 may exert its effects. Notably, ginsenoside Rb1 regulates oxidative stress and inflammatory processes while enhancing neural plasticity by downregulating miR-134 expression and alleviating depressive symptoms. Unlike traditional antidepressants that act on a single target, ginsenoside Rb1 interacts with multiple pathways, reflecting its potential for broader therapeutic application. To compensate for the current deficiency in animal experiments, clinical data, and research on the side effects of ginsenoside Rb1 in the treatment of depression, we reviewed some clinical data on the use of this component in the treatment of other diseases to explore its relevance to depression. Ginsenoside Rb1 is expected to serve as a novel antidepressant or as a complementary component in combination with other antidepressant compounds. However, further clinical trials and molecular studies are necessary to confirm its efficacy and potential side effects.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.