Reduced Dark-Current, Rise-Time, and On-State Delay of Avalanche GaAs Photoconductive Semiconductor Switches by Annealing-Grinding Process

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yingxiang Yang;Long Hu;Xianghong Yang;Jiahui Fu;Zhangjie Zhu;Mingchao Yang;Xin Li;Li Ni;Yang Zhou;Li Geng
{"title":"Reduced Dark-Current, Rise-Time, and On-State Delay of Avalanche GaAs Photoconductive Semiconductor Switches by Annealing-Grinding Process","authors":"Yingxiang Yang;Long Hu;Xianghong Yang;Jiahui Fu;Zhangjie Zhu;Mingchao Yang;Xin Li;Li Ni;Yang Zhou;Li Geng","doi":"10.1109/LED.2025.3527980","DOIUrl":null,"url":null,"abstract":"In this letter, the performance of avalanche Gallium Arsenide (GaAs) Photoconductive Semiconductor Switch (PCSS) aimed at DC charging and fiber-triggered high-voltage switches (HVS) applications is reported. The optimal annealing condition suitable for the device is shown to be 250 °C for 30 min by studying the effects of different annealing conditions on the dark-state leakage current of the PCSS. Based on this, a novel annealing-grinding (AG) process is proposed to improve the electrical characteristics of GaAs PCSS. With an electrode gap of 10 mm and a bias voltage of 40 kV, the leakage currents of A-GaAs PCSS, G-GaAs PCSS and AG-GaAs PCSS are reduced by 60.6 %, 64 % and 67.8 %, respectively, compared with the literature. Further, the effects of different processes on the electrical pulse output of avalanche GaAs PCSS, such as optoelectronic delay time and rise time, are investigated. The results show that the avalanche GaAs PCSS can operate stably at 50 kV with a rising edge of 1.2 ns and a photoelectric delay time of 23.93 ns.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 3","pages":"373-376"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10835177/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, the performance of avalanche Gallium Arsenide (GaAs) Photoconductive Semiconductor Switch (PCSS) aimed at DC charging and fiber-triggered high-voltage switches (HVS) applications is reported. The optimal annealing condition suitable for the device is shown to be 250 °C for 30 min by studying the effects of different annealing conditions on the dark-state leakage current of the PCSS. Based on this, a novel annealing-grinding (AG) process is proposed to improve the electrical characteristics of GaAs PCSS. With an electrode gap of 10 mm and a bias voltage of 40 kV, the leakage currents of A-GaAs PCSS, G-GaAs PCSS and AG-GaAs PCSS are reduced by 60.6 %, 64 % and 67.8 %, respectively, compared with the literature. Further, the effects of different processes on the electrical pulse output of avalanche GaAs PCSS, such as optoelectronic delay time and rise time, are investigated. The results show that the avalanche GaAs PCSS can operate stably at 50 kV with a rising edge of 1.2 ns and a photoelectric delay time of 23.93 ns.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信