Harnessing Earth-Abundant Lead-Free Halide Perovskite for Resistive Switching Memory and Neuromorphic Computing

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zijian Feng, Jiyun Kim, Jie Min, Peiyuan Guan, Shuo Zhang, Xinwei Guan, Tingting Mei, Tianxu Huang, Chun-Ho Lin, Long Hu, Fandi Chen, Zhi Li, Jiabao Yi, Tom Wu, Dewei Chu
{"title":"Harnessing Earth-Abundant Lead-Free Halide Perovskite for Resistive Switching Memory and Neuromorphic Computing","authors":"Zijian Feng, Jiyun Kim, Jie Min, Peiyuan Guan, Shuo Zhang, Xinwei Guan, Tingting Mei, Tianxu Huang, Chun-Ho Lin, Long Hu, Fandi Chen, Zhi Li, Jiabao Yi, Tom Wu, Dewei Chu","doi":"10.1002/aelm.202400804","DOIUrl":null,"url":null,"abstract":"Non-volatile memories are expected to revolutionize a wide range of information technologies, but their manufacturing cost is one of the top concerns researchers must address. This study presents a 1D lead-free halide perovskite K<sub>2</sub>CuBr<sub>3</sub>, as a novel material candidate for the resistive switching (RS) devices, which features only earth-abundant elements, K, Cu, and Br. To the knowledge, this material is the first low-dimensional halide perovskite with exceptionally low production costs and minimal environmental impact. Owing to the unique 1D carrier transport along the Cu─Br networks, the K<sub>2</sub>CuBr<sub>3</sub> RS device exhibits excellent bipolar switching behavior, with an On/Off window of 10<sup>5</sup> and a retention time of over 1000 s. The K<sub>2</sub>CuBr<sub>3</sub> RS devices can also act as artificial synapses to transmit various forms of synaptic plasticities, and their integration into a perceptron artificial neural network can deliver a high algorithm accuracy of 93% for image recognition. Overall, this study underscores the promising attributes of K<sub>2</sub>CuBr<sub>3</sub> for the future development of memory storage and neuromorphic computing, leveraging its distinct material properties and economic benefits.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"29 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400804","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Non-volatile memories are expected to revolutionize a wide range of information technologies, but their manufacturing cost is one of the top concerns researchers must address. This study presents a 1D lead-free halide perovskite K2CuBr3, as a novel material candidate for the resistive switching (RS) devices, which features only earth-abundant elements, K, Cu, and Br. To the knowledge, this material is the first low-dimensional halide perovskite with exceptionally low production costs and minimal environmental impact. Owing to the unique 1D carrier transport along the Cu─Br networks, the K2CuBr3 RS device exhibits excellent bipolar switching behavior, with an On/Off window of 105 and a retention time of over 1000 s. The K2CuBr3 RS devices can also act as artificial synapses to transmit various forms of synaptic plasticities, and their integration into a perceptron artificial neural network can deliver a high algorithm accuracy of 93% for image recognition. Overall, this study underscores the promising attributes of K2CuBr3 for the future development of memory storage and neuromorphic computing, leveraging its distinct material properties and economic benefits.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信