Comprehensive Metabolomic and Bioactivity Profiling of Zingiberaceae Species From Manipur: Elucidating Antidiabetic and Antioxidant Mechanisms Through In Vitro and In Silico Approaches.
{"title":"Comprehensive Metabolomic and Bioactivity Profiling of Zingiberaceae Species From Manipur: Elucidating Antidiabetic and Antioxidant Mechanisms Through In Vitro and In Silico Approaches.","authors":"Khaidem Kennedy Singh, Huidrom Abesana Mangang, Oinam Kelo Singh, Ojit Singh Keithellakpam, Pardeep Kumar Bhardwaj, Pulok K Mukherjee, Nanaocha Sharma","doi":"10.1002/pca.3517","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The Zingiberaceae family is well known for its therapeutic characteristics, notably its antidiabetic and antioxidant potential, which may be linked to its diverse bioactive metabolite composition. Despite widespread usage in traditional medicine, there has been little research on the chemical composition and biological activity of Zingiberaceae plants from Manipur, India.</p><p><strong>Objective: </strong>This study aims to comprehensively profile metabolites and evaluate the antidiabetic and antioxidant properties of seven Zingiberaceae species through in vitro assays and in silico molecular docking analysis.</p><p><strong>Methods: </strong>Hydroalcoholic extracts of Curcuma caesia, Kaempferia parviflora, Curcuma zedoaria, Zingiber officinale, Curcuma angustifolia, Curcuma aromatica, and Curcuma longa were examined. TPC and TFC were measured using Folin-Ciocalteu and Aluminum chloride colorimetry. Antidiabetic efficacy was assessed by α-glucosidase and α-amylase inhibition tests. DPPH and ABTS tests measured antioxidant activity. GC-MS was used for metabolite profiling, and molecular docking was used to explore bioactive compound-antidiabetic protein interactions (3L4Y, 5UBA, NOX1).</p><p><strong>Results: </strong>C. caesia showed the highest TPC (85.41 GAE mg/g) and TFC (126.15 QE mg/g). Z. officinale, C. angustifolia, and K. parviflora exhibited significant α-glucosidase (74%-80%) and α-amylase (62%-73%) inhibition, surpassing acarbose. Strong antioxidant activity was observed, especially in C. caesia and Z. officinale. GC-MS identified 61 bioactive compounds, with molecular docking showing strong interactions of gingerol and zederone with 3L4Y and 5UBA, and germacrone and β-sesquiphellandrene with NOX1.</p><p><strong>Conclusions: </strong>Seven Zingiberaceae species from Manipur exhibit notable antidiabetic and antioxidant potential, with C. caesia and Z. officinale showing superior efficacy. Key bioactives like gingerol, zederone, germacrone, and β-sesquiphellandrene demonstrated strong therapeutic target interactions, supporting their pharmacological potential.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemical Analysis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pca.3517","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The Zingiberaceae family is well known for its therapeutic characteristics, notably its antidiabetic and antioxidant potential, which may be linked to its diverse bioactive metabolite composition. Despite widespread usage in traditional medicine, there has been little research on the chemical composition and biological activity of Zingiberaceae plants from Manipur, India.
Objective: This study aims to comprehensively profile metabolites and evaluate the antidiabetic and antioxidant properties of seven Zingiberaceae species through in vitro assays and in silico molecular docking analysis.
Methods: Hydroalcoholic extracts of Curcuma caesia, Kaempferia parviflora, Curcuma zedoaria, Zingiber officinale, Curcuma angustifolia, Curcuma aromatica, and Curcuma longa were examined. TPC and TFC were measured using Folin-Ciocalteu and Aluminum chloride colorimetry. Antidiabetic efficacy was assessed by α-glucosidase and α-amylase inhibition tests. DPPH and ABTS tests measured antioxidant activity. GC-MS was used for metabolite profiling, and molecular docking was used to explore bioactive compound-antidiabetic protein interactions (3L4Y, 5UBA, NOX1).
Results: C. caesia showed the highest TPC (85.41 GAE mg/g) and TFC (126.15 QE mg/g). Z. officinale, C. angustifolia, and K. parviflora exhibited significant α-glucosidase (74%-80%) and α-amylase (62%-73%) inhibition, surpassing acarbose. Strong antioxidant activity was observed, especially in C. caesia and Z. officinale. GC-MS identified 61 bioactive compounds, with molecular docking showing strong interactions of gingerol and zederone with 3L4Y and 5UBA, and germacrone and β-sesquiphellandrene with NOX1.
Conclusions: Seven Zingiberaceae species from Manipur exhibit notable antidiabetic and antioxidant potential, with C. caesia and Z. officinale showing superior efficacy. Key bioactives like gingerol, zederone, germacrone, and β-sesquiphellandrene demonstrated strong therapeutic target interactions, supporting their pharmacological potential.
期刊介绍:
Phytochemical Analysis is devoted to the publication of original articles concerning the development, improvement, validation and/or extension of application of analytical methodology in the plant sciences. The spectrum of coverage is broad, encompassing methods and techniques relevant to the detection (including bio-screening), extraction, separation, purification, identification and quantification of compounds in plant biochemistry, plant cellular and molecular biology, plant biotechnology, the food sciences, agriculture and horticulture. The Journal publishes papers describing significant novelty in the analysis of whole plants (including algae), plant cells, tissues and organs, plant-derived extracts and plant products (including those which have been partially or completely refined for use in the food, agrochemical, pharmaceutical and related industries). All forms of physical, chemical, biochemical, spectroscopic, radiometric, electrometric, chromatographic, metabolomic and chemometric investigations of plant products (monomeric species as well as polymeric molecules such as nucleic acids, proteins, lipids and carbohydrates) are included within the remit of the Journal. Papers dealing with novel methods relating to areas such as data handling/ data mining in plant sciences will also be welcomed.