Simulation Study on the Impact of Miniaturization in 3 nm Node 3D Junctionless Transistors

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Luca Scognamiglio;Fabrizio Mo;Chiara Elfi Spano;Marco Vacca;Gianluca Piccinini
{"title":"Simulation Study on the Impact of Miniaturization in 3 nm Node 3D Junctionless Transistors","authors":"Luca Scognamiglio;Fabrizio Mo;Chiara Elfi Spano;Marco Vacca;Gianluca Piccinini","doi":"10.1109/TNANO.2025.3539457","DOIUrl":null,"url":null,"abstract":"Junctionless Nanosheet gate-all-around Field Effect Transistor (JL-NSGAAFET) is a promising technology characterized by the absence of any junctions between source-channel-drain. This absence allows to further scale down transistors while limiting short-channel effects. In this article, JL-NSGAAFET is explored as a potential candidate for the next 3 nm technology node through 3D TCAD simulations. First, we propose and simulate, through fabrication process simulations, a fabrication strategy for the JL-NSGAAFET compatible with the current manufacturing technology and based on the inversion mode NSGAAFET fabrication process. The high-k gate dielectric (HfO<sub>2</sub>) and metal-gate technology (TiN) are also adopted in the fabrication process to enhance the electrostatic gate control over the channel for the n-type and p-type transistors. Then, we perform electrical simulations of the device by also including drift-diffusion model and quantum density gradient correction. We characterize the device in terms of electrical performance and compare with the conventional NSGAAFET. Furthermore, to investigate the impact of the device scaling on the unwanted short channel effects, we simulate and analyze the devices while varying the gate length (L<sub>G</sub>) from 20 nm to 12 nm. Our reported simulation results prove that JL-NSGAAFET exhibits near-ideal subthreshold slope, low drain-induced barrier lowering (DIBL) and high on-to-off current ratio (I<sub>ON</sub>/I<sub>OFF</sub>) with superior advantages of greater drive currents and a simpler fabrication process because of the absence of junctions.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"102-109"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10876810/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Junctionless Nanosheet gate-all-around Field Effect Transistor (JL-NSGAAFET) is a promising technology characterized by the absence of any junctions between source-channel-drain. This absence allows to further scale down transistors while limiting short-channel effects. In this article, JL-NSGAAFET is explored as a potential candidate for the next 3 nm technology node through 3D TCAD simulations. First, we propose and simulate, through fabrication process simulations, a fabrication strategy for the JL-NSGAAFET compatible with the current manufacturing technology and based on the inversion mode NSGAAFET fabrication process. The high-k gate dielectric (HfO2) and metal-gate technology (TiN) are also adopted in the fabrication process to enhance the electrostatic gate control over the channel for the n-type and p-type transistors. Then, we perform electrical simulations of the device by also including drift-diffusion model and quantum density gradient correction. We characterize the device in terms of electrical performance and compare with the conventional NSGAAFET. Furthermore, to investigate the impact of the device scaling on the unwanted short channel effects, we simulate and analyze the devices while varying the gate length (LG) from 20 nm to 12 nm. Our reported simulation results prove that JL-NSGAAFET exhibits near-ideal subthreshold slope, low drain-induced barrier lowering (DIBL) and high on-to-off current ratio (ION/IOFF) with superior advantages of greater drive currents and a simpler fabrication process because of the absence of junctions.
小型化对3nm节点三维无结晶体管影响的仿真研究
无结纳米片栅极全能场效应晶体管(JL-NSGAAFET)是一种极具发展前景的技术,其特点是源极-通道-漏极之间没有任何结。这种缺失允许进一步缩小晶体管的尺寸,同时限制短通道效应。本文通过三维TCAD仿真,探讨了JL-NSGAAFET作为下一个3nm技术节点的潜在候选。首先,通过制造工艺仿真,提出并仿真了一种与当前制造工艺兼容的基于反演模式NSGAAFET制造工艺的JL-NSGAAFET制造策略。在制造过程中还采用了高k栅极介质(HfO2)和金属栅极技术(TiN),以增强对n型和p型晶体管通道的静电栅极控制。然后,我们还通过漂移扩散模型和量子密度梯度校正对器件进行了电学模拟。我们在电气性能方面对器件进行了表征,并与传统的NSGAAFET进行了比较。此外,为了研究器件缩放对不必要的短通道效应的影响,我们在栅极长度(LG)从20 nm变化到12 nm时对器件进行了模拟和分析。我们报告的模拟结果证明,JL-NSGAAFET具有接近理想的亚阈值斜率,低漏极诱导势垒降低(DIBL)和高通断电流比(ION/IOFF),具有更大的驱动电流和更简单的制造工艺(因为没有结)的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信