Model-Based OPC With Adaptive PID Control Through Reinforcement Learning

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Taeyoung Kim;Shilong Zhang;Youngsoo Shin
{"title":"Model-Based OPC With Adaptive PID Control Through Reinforcement Learning","authors":"Taeyoung Kim;Shilong Zhang;Youngsoo Shin","doi":"10.1109/TSM.2025.3528735","DOIUrl":null,"url":null,"abstract":"Model-based optical proximity correction (MB- OPC) relies on a feedback loop, in which correction result, measured as edge placement error (EPE), is used for decision of next correction. A proportional-integral-derivative (PID) control is a popular mechanism employed for such feedback loop, but current MB-OPC usually relies only on P control. This is because there is no systematic way to customize P, I, and D coefficients for different layouts in different OPC iterations.We apply reinforcement learning (RL) to construct the trained actor that adaptively yields PID coefficients within the correction loop. The RL model consists of an actor and a critic. We perform supervised pre-training to quickly set the initial weights of RL model, with the actor mimicking standard MB-OPC. Subsequently, the critic is trained to predict accurate Q-value, the cumulative reward from OPC correction. The actor is then trained to maximize this Q-value. Experiments are performed with aggressive target maximum EPE values. The proposed OPC for test layouts requires 5 to 7 iterations, while standard MB-OPC (with constant coefficient-based control) completes in 20 to 28 iterations. This reduces OPC runtime to about 1/2.7 on average. In addition, maximum EPE is also reduced by about 24%.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"38 1","pages":"48-56"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10847731/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Model-based optical proximity correction (MB- OPC) relies on a feedback loop, in which correction result, measured as edge placement error (EPE), is used for decision of next correction. A proportional-integral-derivative (PID) control is a popular mechanism employed for such feedback loop, but current MB-OPC usually relies only on P control. This is because there is no systematic way to customize P, I, and D coefficients for different layouts in different OPC iterations.We apply reinforcement learning (RL) to construct the trained actor that adaptively yields PID coefficients within the correction loop. The RL model consists of an actor and a critic. We perform supervised pre-training to quickly set the initial weights of RL model, with the actor mimicking standard MB-OPC. Subsequently, the critic is trained to predict accurate Q-value, the cumulative reward from OPC correction. The actor is then trained to maximize this Q-value. Experiments are performed with aggressive target maximum EPE values. The proposed OPC for test layouts requires 5 to 7 iterations, while standard MB-OPC (with constant coefficient-based control) completes in 20 to 28 iterations. This reduces OPC runtime to about 1/2.7 on average. In addition, maximum EPE is also reduced by about 24%.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Semiconductor Manufacturing
IEEE Transactions on Semiconductor Manufacturing 工程技术-工程:电子与电气
CiteScore
5.20
自引率
11.10%
发文量
101
审稿时长
3.3 months
期刊介绍: The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信