HotspotFusion: A Generative AI Approach to Predicting CMP Hotspot in Semiconductor Manufacturing

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Hsiu-Hui Hsiao;Kung-Jeng Wang
{"title":"HotspotFusion: A Generative AI Approach to Predicting CMP Hotspot in Semiconductor Manufacturing","authors":"Hsiu-Hui Hsiao;Kung-Jeng Wang","doi":"10.1109/TSM.2024.3510376","DOIUrl":null,"url":null,"abstract":"The semiconductor industry thrives on rapid technological advancements, crucial for superior product performance and cost efficiency. Chip design houses and consumer electronics companies must continuously pursue New Tape Out (NTO) to maintain technological leadership. Timely NTO completion expedites product launches, crucial in the competitive semiconductor market. This paper addresses Chemical Mechanical Polishing (CMP) hotspot, critical in NTO quality and cycle time, affecting wafer surface topology. Hotspot defects can degrade wafer performance, demanding swift detection and resolution. Traditional methods can only identify CMP hotspot after manufacturing, necessitating repeated adjustments to IC design. We propose HotspotFusion, leveraging pattern density data from Graphic Design System (GDS) to predict CMP hotspot early in the design phase. Utilizing a generative AI model, HotspotFusion significantly reduces NTO cycle time by enabling proactive hotspot detection and process optimization, fostering efficiency and competitiveness in semiconductor manufacturing.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"38 1","pages":"73-82"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10772592/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The semiconductor industry thrives on rapid technological advancements, crucial for superior product performance and cost efficiency. Chip design houses and consumer electronics companies must continuously pursue New Tape Out (NTO) to maintain technological leadership. Timely NTO completion expedites product launches, crucial in the competitive semiconductor market. This paper addresses Chemical Mechanical Polishing (CMP) hotspot, critical in NTO quality and cycle time, affecting wafer surface topology. Hotspot defects can degrade wafer performance, demanding swift detection and resolution. Traditional methods can only identify CMP hotspot after manufacturing, necessitating repeated adjustments to IC design. We propose HotspotFusion, leveraging pattern density data from Graphic Design System (GDS) to predict CMP hotspot early in the design phase. Utilizing a generative AI model, HotspotFusion significantly reduces NTO cycle time by enabling proactive hotspot detection and process optimization, fostering efficiency and competitiveness in semiconductor manufacturing.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Semiconductor Manufacturing
IEEE Transactions on Semiconductor Manufacturing 工程技术-工程:电子与电气
CiteScore
5.20
自引率
11.10%
发文量
101
审稿时长
3.3 months
期刊介绍: The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信