Geometry-Based Curvilinear Mask Process Correction for Enhanced Pattern Fidelity, Contrast, and Manufacturability

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Chun-Hung Liu;Ze-An Ding
{"title":"Geometry-Based Curvilinear Mask Process Correction for Enhanced Pattern Fidelity, Contrast, and Manufacturability","authors":"Chun-Hung Liu;Ze-An Ding","doi":"10.1109/TSM.2024.3521368","DOIUrl":null,"url":null,"abstract":"Curvilinear (CL) mask patterns, essential for extreme ultraviolet lithography in advanced semiconductor manufacturing, suffer from degraded fidelity and contrast due to complex pattern environments and severe proximity effects, necessitating CL mask process correction (CL-MPC). However, conventional shape-based CL-MPC methods cannot enhance image contrast because of their inability to adjust dose levels, while dose-based methods require extensive computational time and are incompatible with electron beam writers lacking dose adjustment capabilities. Therefore, this study proposes a two-layer geometry-based CL-MPC method integrating pattern fidelity and image contrast co-optimization with pattern manufacturability enhancement. It employs two overlapping patterns, each of which adjusts the geometry without modifying the dose. A skeleton-based approach creates CL pattern fragments, and dual proportional-integral–derivative controllers improve the pattern fidelity more effectively by classifying the energy slope of target points. For image contrast improvement, a feedback mechanism replaces unsatisfactory parameters with optimized values by minimizing the reciprocal of the energy slope of target points. The pattern manufacturability enhancement further improves mask fabrication by smoothing edge corners and optimizing pattern angles. The proposed method significantly improves pattern fidelity, image contrast, correction runtime efficiency, and manufacturability, making corrected patterns compatible with all electron-beam writers and presenting a promising solution for CL-MPC limitations.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"38 1","pages":"36-47"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10812794/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Curvilinear (CL) mask patterns, essential for extreme ultraviolet lithography in advanced semiconductor manufacturing, suffer from degraded fidelity and contrast due to complex pattern environments and severe proximity effects, necessitating CL mask process correction (CL-MPC). However, conventional shape-based CL-MPC methods cannot enhance image contrast because of their inability to adjust dose levels, while dose-based methods require extensive computational time and are incompatible with electron beam writers lacking dose adjustment capabilities. Therefore, this study proposes a two-layer geometry-based CL-MPC method integrating pattern fidelity and image contrast co-optimization with pattern manufacturability enhancement. It employs two overlapping patterns, each of which adjusts the geometry without modifying the dose. A skeleton-based approach creates CL pattern fragments, and dual proportional-integral–derivative controllers improve the pattern fidelity more effectively by classifying the energy slope of target points. For image contrast improvement, a feedback mechanism replaces unsatisfactory parameters with optimized values by minimizing the reciprocal of the energy slope of target points. The pattern manufacturability enhancement further improves mask fabrication by smoothing edge corners and optimizing pattern angles. The proposed method significantly improves pattern fidelity, image contrast, correction runtime efficiency, and manufacturability, making corrected patterns compatible with all electron-beam writers and presenting a promising solution for CL-MPC limitations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Semiconductor Manufacturing
IEEE Transactions on Semiconductor Manufacturing 工程技术-工程:电子与电气
CiteScore
5.20
自引率
11.10%
发文量
101
审稿时长
3.3 months
期刊介绍: The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信