Multilayered visual metabolomics analysis framework for enhanced exploration of functional components in wolfberry

IF 9.8 1区 农林科学 Q1 CHEMISTRY, APPLIED
Shiqi Chen , Yifan Li , Huixia Zhang , Jingguang Li , Liu Yang , Qiqi Wang , Shuai Zhang , Pengjie Luo , Hongping Wang , Haiyang Jiang
{"title":"Multilayered visual metabolomics analysis framework for enhanced exploration of functional components in wolfberry","authors":"Shiqi Chen ,&nbsp;Yifan Li ,&nbsp;Huixia Zhang ,&nbsp;Jingguang Li ,&nbsp;Liu Yang ,&nbsp;Qiqi Wang ,&nbsp;Shuai Zhang ,&nbsp;Pengjie Luo ,&nbsp;Hongping Wang ,&nbsp;Haiyang Jiang","doi":"10.1016/j.foodchem.2025.143583","DOIUrl":null,"url":null,"abstract":"<div><div>Wolfberry, regarded as a nutritious fruit, has garnered significant attention in the food industry due to potential health benefits. However, the tissue-specific distribution and dynamic accumulation patterns of nutritional metabolites such as flavonoids are still unclear. In this study, a novel spatial metabolomics framework was developed, incorporating instrumental optimization, metabolite identification, molecular network analysis, metabolic pathway mapping, and machine learning-based imaging. Using DESI-MSI, this approach enabled rapid, non-destructive, in situ analysis of wolfberry metabolites with enhanced sensitivity and spatial resolution. Detailed insights into chemical and spatial changes during ripening were obtained, with a focus on flavonoids. The visualization of the flavonoid biosynthetic pathway highlighted the impact of C-3 hydroxylation on flavonoid redistribution. Furthermore, a classification model achieved a prediction accuracy exceeding 99 %, consistent with metabolic network analyses. This framework provides a powerful tool for plant metabolomics, facilitating the exploration of functional components and metabolic pathways.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"477 ","pages":"Article 143583"},"PeriodicalIF":9.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814625008349","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Wolfberry, regarded as a nutritious fruit, has garnered significant attention in the food industry due to potential health benefits. However, the tissue-specific distribution and dynamic accumulation patterns of nutritional metabolites such as flavonoids are still unclear. In this study, a novel spatial metabolomics framework was developed, incorporating instrumental optimization, metabolite identification, molecular network analysis, metabolic pathway mapping, and machine learning-based imaging. Using DESI-MSI, this approach enabled rapid, non-destructive, in situ analysis of wolfberry metabolites with enhanced sensitivity and spatial resolution. Detailed insights into chemical and spatial changes during ripening were obtained, with a focus on flavonoids. The visualization of the flavonoid biosynthetic pathway highlighted the impact of C-3 hydroxylation on flavonoid redistribution. Furthermore, a classification model achieved a prediction accuracy exceeding 99 %, consistent with metabolic network analyses. This framework provides a powerful tool for plant metabolomics, facilitating the exploration of functional components and metabolic pathways.

Abstract Image

Abstract Image

多层视觉代谢组学分析框架,加强对枸杞功能成分的探索
枸杞被认为是一种营养丰富的水果,由于其潜在的健康益处,在食品工业中引起了极大的关注。然而,黄酮类营养代谢产物的组织特异性分布和动态积累模式尚不清楚。在这项研究中,开发了一个新的空间代谢组学框架,包括仪器优化、代谢物鉴定、分子网络分析、代谢途径映射和基于机器学习的成像。使用DESI-MSI,该方法能够快速,非破坏性地原位分析枸杞代谢物,具有更高的灵敏度和空间分辨率。获得了成熟过程中化学和空间变化的详细见解,重点是黄酮类化合物。类黄酮生物合成途径的可视化强调了C-3羟基化对类黄酮再分布的影响。此外,分类模型的预测精度超过99 %,与代谢网络分析一致。该框架为植物代谢组学研究提供了强有力的工具,有助于探索植物的功能成分和代谢途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信