Dániel L. Barabási, André Ferreira Castro, Florian Engert
{"title":"Three systems of circuit formation: assembly, updating and tuning","authors":"Dániel L. Barabási, André Ferreira Castro, Florian Engert","doi":"10.1038/s41583-025-00910-9","DOIUrl":null,"url":null,"abstract":"Understanding the relationship between genotype and neuronal circuit phenotype necessitates an integrated view of genetics, development, plasticity and learning. Challenging the prevailing notion that emphasizes learning and plasticity as primary drivers of circuit assembly, in this Perspective, we delineate a tripartite framework to clarify the respective roles that learning and plasticity might have in this process. In the first part of the framework, which we term System One, neural circuits are established purely through genetically driven algorithms, in which spike timing-dependent plasticity serves no instructive role. We propose that these circuits equip the animal with sufficient skill and knowledge to successfully engage the world. Next, System Two is governed by rare but critical ‘single-shot learning’ events, which occur in response to survival situations and prompt rapid synaptic reconfiguration. Such events serve as crucial updates to the existing hardwired knowledge base of an organism. Finally, System Three is characterized by a perpetual state of synaptic recalibration, involving continual plasticity for circuit stabilization and fine-tuning. By outlining the definitions and roles of these three core systems, our framework aims to resolve existing ambiguities related to and enrich our understanding of neural circuit formation. In this Perspective, Barabási, Ferreira Castro and Engert challenge the notion that learning and plasticity primarily drive the assembly of neural circuits. They present a tripartite framework for how neural circuits form, outlining the relative contributions of developmental, associative learning and tuning-based factors to this process and knowledge acquisition.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"26 4","pages":"232-243"},"PeriodicalIF":28.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41583-025-00910-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the relationship between genotype and neuronal circuit phenotype necessitates an integrated view of genetics, development, plasticity and learning. Challenging the prevailing notion that emphasizes learning and plasticity as primary drivers of circuit assembly, in this Perspective, we delineate a tripartite framework to clarify the respective roles that learning and plasticity might have in this process. In the first part of the framework, which we term System One, neural circuits are established purely through genetically driven algorithms, in which spike timing-dependent plasticity serves no instructive role. We propose that these circuits equip the animal with sufficient skill and knowledge to successfully engage the world. Next, System Two is governed by rare but critical ‘single-shot learning’ events, which occur in response to survival situations and prompt rapid synaptic reconfiguration. Such events serve as crucial updates to the existing hardwired knowledge base of an organism. Finally, System Three is characterized by a perpetual state of synaptic recalibration, involving continual plasticity for circuit stabilization and fine-tuning. By outlining the definitions and roles of these three core systems, our framework aims to resolve existing ambiguities related to and enrich our understanding of neural circuit formation. In this Perspective, Barabási, Ferreira Castro and Engert challenge the notion that learning and plasticity primarily drive the assembly of neural circuits. They present a tripartite framework for how neural circuits form, outlining the relative contributions of developmental, associative learning and tuning-based factors to this process and knowledge acquisition.
期刊介绍:
Nature Reviews Neuroscience is a multidisciplinary journal that covers various fields within neuroscience, aiming to offer a comprehensive understanding of the structure and function of the central nervous system. Advances in molecular, developmental, and cognitive neuroscience, facilitated by powerful experimental techniques and theoretical approaches, have made enduring neurobiological questions more accessible. Nature Reviews Neuroscience serves as a reliable and accessible resource, addressing the breadth and depth of modern neuroscience. It acts as an authoritative and engaging reference for scientists interested in all aspects of neuroscience.