{"title":"The Mechanism Behind the Therapeutic Role of Alpha-Tocopherol in Mitigating Hypobaric Hypoxia–Induced Eye Defect in Drosophila melanogaster","authors":"Seekha Naik, Smruti Sudha Biswal, Monalisa Mishra","doi":"10.1002/dneu.22963","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Hypoxia, or low oxygen levels, is linked to several pathological disorders, including retinopathies. Retina being a metabolically active tissue, low oxygen levels resulted in retinal degradation. The developmental perspective of hypobaric hypoxia (HBH)-induced eye development remains elusive. <i>Drosophila</i> is used as our model organism to investigate the impact of HBH on eye development and alpha-tocopherol as a potential inhibitor. To induce the hypoxic condition, we exposed the <i>Drosophila</i> to hypobaric pressure (120 mbar). Hypoxia induces eye defects in different developmental stages of <i>Drosophila</i> as revealed by histological staining. Biochemical estimation disclosed the presence of reactive oxygen species (ROS) during hypoxia, which led to cellular injury and DNA damage. Quantitative PCR reveals the upregulation of <i>Puf</i>, <i>Wge</i>, and <i>Twr</i> genes and the downregulation of <i>Rh1</i> and <i>Rh6</i> involved in eye development. All these defects are brought back to normal levels after treatment with alpha-tocopherol. This research provides a foundation for understanding ocular developmental problems caused by oxygen deprivation and alpha-tocopherol as a crucial therapeutic approach to the treatment of HBH.</p>\n </div>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"85 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dneu.22963","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hypoxia, or low oxygen levels, is linked to several pathological disorders, including retinopathies. Retina being a metabolically active tissue, low oxygen levels resulted in retinal degradation. The developmental perspective of hypobaric hypoxia (HBH)-induced eye development remains elusive. Drosophila is used as our model organism to investigate the impact of HBH on eye development and alpha-tocopherol as a potential inhibitor. To induce the hypoxic condition, we exposed the Drosophila to hypobaric pressure (120 mbar). Hypoxia induces eye defects in different developmental stages of Drosophila as revealed by histological staining. Biochemical estimation disclosed the presence of reactive oxygen species (ROS) during hypoxia, which led to cellular injury and DNA damage. Quantitative PCR reveals the upregulation of Puf, Wge, and Twr genes and the downregulation of Rh1 and Rh6 involved in eye development. All these defects are brought back to normal levels after treatment with alpha-tocopherol. This research provides a foundation for understanding ocular developmental problems caused by oxygen deprivation and alpha-tocopherol as a crucial therapeutic approach to the treatment of HBH.
期刊介绍:
Developmental Neurobiology (previously the Journal of Neurobiology ) publishes original research articles on development, regeneration, repair and plasticity of the nervous system and on the ontogeny of behavior. High quality contributions in these areas are solicited, with an emphasis on experimental as opposed to purely descriptive work. The Journal also will consider manuscripts reporting novel approaches and techniques for the study of the development of the nervous system as well as occasional special issues on topics of significant current interest. We welcome suggestions on possible topics from our readers.