Personalized nutrition studies of human gut microbiome-polyphenol interactions utilizing continuous multistaged in vitro fermentation models–a narrative review
{"title":"Personalized nutrition studies of human gut microbiome-polyphenol interactions utilizing continuous multistaged in vitro fermentation models–a narrative review","authors":"Shiqi Zhang , Hanmeng Niu , Jiangjiang Zhu","doi":"10.1016/j.nutres.2025.01.011","DOIUrl":null,"url":null,"abstract":"<div><div>The gut microbiota, a complex community of microorganisms primarily inhabiting the human large intestine, plays a crucial role in human health. Gut dysbiosis, characterized by an imbalance in gut bacterial populations, has been increasingly recognized as a significant factor in the pathogenesis of metabolic diseases such as type 2 diabetes, inflammatory bowel disease, and colorectal cancer. Polyphenols are critical modulators of gut microbial composition and metabolism. However, the extent of polyphenol-induced modulation of the gut microbiome remains largely unexplored. <em>In vitro</em> models offer a convenient and ethical alternative to <em>in vivo</em> studies for investigating nutrient-gut microbiome interactions, facilitating easy sampling and controlled experimental conditions. Among these, continuous multistaged <em>in vitro</em> fermentation models, which simulate different sections of the human gastrointestinal tract (e.g., proximal colon, transverse colon, and distal colon), provide a more accurate representation of the human gut environment compared to single-batch fermentation. Various configurations of these multistaged models have been developed and widely employed in studies examining the effects of polyphenols on the gut microbiome. This review aims to summarize the different configurations of multistaged <em>in vitro</em> fermentation models and recent advancements in their development, highlight key aspects of experimental design, outline commonly used analytical workflows with complementary analyses, and review the restorative effects of polyphenol interventions on dysregulated gut microbiota.</div></div>","PeriodicalId":19245,"journal":{"name":"Nutrition Research","volume":"135 ","pages":"Pages 101-127"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0271531725000193","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
The gut microbiota, a complex community of microorganisms primarily inhabiting the human large intestine, plays a crucial role in human health. Gut dysbiosis, characterized by an imbalance in gut bacterial populations, has been increasingly recognized as a significant factor in the pathogenesis of metabolic diseases such as type 2 diabetes, inflammatory bowel disease, and colorectal cancer. Polyphenols are critical modulators of gut microbial composition and metabolism. However, the extent of polyphenol-induced modulation of the gut microbiome remains largely unexplored. In vitro models offer a convenient and ethical alternative to in vivo studies for investigating nutrient-gut microbiome interactions, facilitating easy sampling and controlled experimental conditions. Among these, continuous multistaged in vitro fermentation models, which simulate different sections of the human gastrointestinal tract (e.g., proximal colon, transverse colon, and distal colon), provide a more accurate representation of the human gut environment compared to single-batch fermentation. Various configurations of these multistaged models have been developed and widely employed in studies examining the effects of polyphenols on the gut microbiome. This review aims to summarize the different configurations of multistaged in vitro fermentation models and recent advancements in their development, highlight key aspects of experimental design, outline commonly used analytical workflows with complementary analyses, and review the restorative effects of polyphenol interventions on dysregulated gut microbiota.
期刊介绍:
Nutrition Research publishes original research articles, communications, and reviews on basic and applied nutrition. The mission of Nutrition Research is to serve as the journal for global communication of nutrition and life sciences research on diet and health. The field of nutrition sciences includes, but is not limited to, the study of nutrients during growth, reproduction, aging, health, and disease.
Articles covering basic and applied research on all aspects of nutrition sciences are encouraged, including: nutritional biochemistry and metabolism; metabolomics, nutrient gene interactions; nutrient requirements for health; nutrition and disease; digestion and absorption; nutritional anthropology; epidemiology; the influence of socioeconomic and cultural factors on nutrition of the individual and the community; the impact of nutrient intake on disease response and behavior; the consequences of nutritional deficiency on growth and development, endocrine and nervous systems, and immunity; nutrition and gut microbiota; food intolerance and allergy; nutrient drug interactions; nutrition and aging; nutrition and cancer; obesity; diabetes; and intervention programs.