Effect of 10 freshwater microalgae on in vitro methane mitigation and rumen fermentation.

IF 3.7 1区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Yang Li, Mariluz Bagnoud-Velásquez, Yixin Zhang, Kai Wang, Lenka Punčochářová, Carmen Kunz, Sebastian Dubois, Rong Peng, Alexandra Baumeyer Brahier, Fabian Wahl, Mutian Niu
{"title":"Effect of 10 freshwater microalgae on in vitro methane mitigation and rumen fermentation.","authors":"Yang Li, Mariluz Bagnoud-Velásquez, Yixin Zhang, Kai Wang, Lenka Punčochářová, Carmen Kunz, Sebastian Dubois, Rong Peng, Alexandra Baumeyer Brahier, Fabian Wahl, Mutian Niu","doi":"10.3168/jds.2024-25749","DOIUrl":null,"url":null,"abstract":"<p><p>Agriculture is at the pivot point between anthroposphere, biosphere, and atmosphere. Innovative solutions are needed to reduce agricultural emissions and improve sustainability. Microalgae animal feed could be such a solution. This study aimed to evaluate the effects of 10 freshwater microalgae: Auxenochlorella protothecoides, Chlamydomonas pulvinate, Chlorella luteoviridis, Chlorella variabilis, Euglena mutabilis, Parachlorella kessleri, Stichococcus bacillaris, Tetradesmus acuminatus, Tetradesmus obliquus, and Tetraselmis gracilis, on ruminal methane (CH<sub>4</sub>) production, nutrient digestibility, and rumen fermentation using the in vitro Hohenheim gas test. The microalgae were cultured in a carbon dioxide (CO<sub>2</sub>) incubator at 2% CO<sub>2</sub>, at the optimal conditions for each strain. The highest producers were P. kessleri and T. obliquus, with a biomass concentration of 0.69 and 0.73 g/L·d, respectively. Their PUFA contents ranged from 33.2 to 69.1 of total fatty acids. Microalgae were tested at a 15% replacement in a control basal diet of 40.0% DM grass silage, 40.0% maize silage, 15% hay, and 5% concentrate. Data were analyzed using a mixed model in R. Ruminal CH<sub>4</sub> production was reduced by 15.4%, 17.4%, and 16.4% in diets containing A. protothecoides, C. luteoviridis, and P. kessleri, respectively, compared with the control diet. Similarly, these diets reduced in vitro organic matter digestibility by 3.5%, 5.2%, and 5.4%, respectively. However, only A. protothecoides reduced CH<sub>4</sub>/CO<sub>2</sub> ratio by 3.5% compared with the control diet. Propionate molar proportion was decreased by 2.4, 3.0, 2.5, and 2.5%pt for diets containing C. pulvinate, E. mutabilis, P. kessleri, and T. obliquus, respectively. Marginal effects of dietary variables were analyzed using the generalized additive model framework, revealing a negative relationship between dietary PUFA, sulfur content, and CH<sub>4</sub> production, and a negative relationship between dietary PUFA and CH<sub>4</sub>/CO<sub>2</sub> ratio. Incorporating high-PUFA microalgae in ruminant diets shows potential for reducing enteric CH<sub>4</sub> emissions, warranting further investigation.</p>","PeriodicalId":354,"journal":{"name":"Journal of Dairy Science","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dairy Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3168/jds.2024-25749","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Agriculture is at the pivot point between anthroposphere, biosphere, and atmosphere. Innovative solutions are needed to reduce agricultural emissions and improve sustainability. Microalgae animal feed could be such a solution. This study aimed to evaluate the effects of 10 freshwater microalgae: Auxenochlorella protothecoides, Chlamydomonas pulvinate, Chlorella luteoviridis, Chlorella variabilis, Euglena mutabilis, Parachlorella kessleri, Stichococcus bacillaris, Tetradesmus acuminatus, Tetradesmus obliquus, and Tetraselmis gracilis, on ruminal methane (CH4) production, nutrient digestibility, and rumen fermentation using the in vitro Hohenheim gas test. The microalgae were cultured in a carbon dioxide (CO2) incubator at 2% CO2, at the optimal conditions for each strain. The highest producers were P. kessleri and T. obliquus, with a biomass concentration of 0.69 and 0.73 g/L·d, respectively. Their PUFA contents ranged from 33.2 to 69.1 of total fatty acids. Microalgae were tested at a 15% replacement in a control basal diet of 40.0% DM grass silage, 40.0% maize silage, 15% hay, and 5% concentrate. Data were analyzed using a mixed model in R. Ruminal CH4 production was reduced by 15.4%, 17.4%, and 16.4% in diets containing A. protothecoides, C. luteoviridis, and P. kessleri, respectively, compared with the control diet. Similarly, these diets reduced in vitro organic matter digestibility by 3.5%, 5.2%, and 5.4%, respectively. However, only A. protothecoides reduced CH4/CO2 ratio by 3.5% compared with the control diet. Propionate molar proportion was decreased by 2.4, 3.0, 2.5, and 2.5%pt for diets containing C. pulvinate, E. mutabilis, P. kessleri, and T. obliquus, respectively. Marginal effects of dietary variables were analyzed using the generalized additive model framework, revealing a negative relationship between dietary PUFA, sulfur content, and CH4 production, and a negative relationship between dietary PUFA and CH4/CO2 ratio. Incorporating high-PUFA microalgae in ruminant diets shows potential for reducing enteric CH4 emissions, warranting further investigation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Dairy Science
Journal of Dairy Science 农林科学-奶制品与动物科学
CiteScore
7.90
自引率
17.10%
发文量
784
审稿时长
4.2 months
期刊介绍: The official journal of the American Dairy Science Association®, Journal of Dairy Science® (JDS) is the leading peer-reviewed general dairy research journal in the world. JDS readers represent education, industry, and government agencies in more than 70 countries with interests in biochemistry, breeding, economics, engineering, environment, food science, genetics, microbiology, nutrition, pathology, physiology, processing, public health, quality assurance, and sanitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信