Dazhi Jiang , Shijin Wang , Changrong Yang , Ziyi Jia , Fulong Wang , Yongjie Sheng , Yongxing Ai , Jiacui Xu
{"title":"Quantity of Cu(II) ions in a copper pot by a DNAzyme-based fluorescent sensor","authors":"Dazhi Jiang , Shijin Wang , Changrong Yang , Ziyi Jia , Fulong Wang , Yongjie Sheng , Yongxing Ai , Jiacui Xu","doi":"10.1016/j.fochms.2025.100249","DOIUrl":null,"url":null,"abstract":"<div><div>Copper deficiency can adversely impact health, and using copper cookware can help supplement copper ions. In this study, we have developed a fluorescent Cu(II) sensor using an efficient DNAzyme, a novel cofactor 2-mercaptoethanol and an optimized fluorophore. This sensor has demonstrated high sensitivity, with a linear detection range of 30 nM-50 μM and a detection limit of 3.4 nM. Furthermore, it has shown high selectivity for Cu(II) ions and possesses excellent anti-interference ability against 10,000-fold excess of Ca(II) and Mg(II), <em>etc.</em> These features allow the sensor suitable for quantitatively detecting Cu(II) in a copper pot, where a maximum Cu(II) concentration of 40.0 μM was achieved upon the addition of pickled cucumber. Our findings suggest that acidic conditions are beneficial for increasing Cu(II) content in the cooking medium. This provides a scientific basis for using copper cookware as a means to increase dietary copper intake.</div></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"10 ","pages":"Article 100249"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666566225000103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Copper deficiency can adversely impact health, and using copper cookware can help supplement copper ions. In this study, we have developed a fluorescent Cu(II) sensor using an efficient DNAzyme, a novel cofactor 2-mercaptoethanol and an optimized fluorophore. This sensor has demonstrated high sensitivity, with a linear detection range of 30 nM-50 μM and a detection limit of 3.4 nM. Furthermore, it has shown high selectivity for Cu(II) ions and possesses excellent anti-interference ability against 10,000-fold excess of Ca(II) and Mg(II), etc. These features allow the sensor suitable for quantitatively detecting Cu(II) in a copper pot, where a maximum Cu(II) concentration of 40.0 μM was achieved upon the addition of pickled cucumber. Our findings suggest that acidic conditions are beneficial for increasing Cu(II) content in the cooking medium. This provides a scientific basis for using copper cookware as a means to increase dietary copper intake.
期刊介绍:
Food Chemistry: Molecular Sciences is one of three companion journals to the highly respected Food Chemistry.
Food Chemistry: Molecular Sciences is an open access journal publishing research advancing the theory and practice of molecular sciences of foods.
The types of articles considered are original research articles, analytical methods, comprehensive reviews and commentaries.
Topics include:
Molecular sciences relating to major and minor components of food (nutrients and bioactives) and their physiological, sensory, flavour, and microbiological aspects; data must be sufficient to demonstrate relevance to foods and as consumed by humans
Changes in molecular composition or structure in foods occurring or induced during growth, distribution and processing (industrial or domestic) or as a result of human metabolism
Quality, safety, authenticity and traceability of foods and packaging materials
Valorisation of food waste arising from processing and exploitation of by-products
Molecular sciences of additives, contaminants including agro-chemicals, together with their metabolism, food fate and benefit: risk to human health
Novel analytical and computational (bioinformatics) methods related to foods as consumed, nutrients and bioactives, sensory, metabolic fate, and origins of foods. Articles must be concerned with new or novel methods or novel uses and must be applied to real-world samples to demonstrate robustness. Those dealing with significant improvements to existing methods or foods and commodities from different regions, and re-use of existing data will be considered, provided authors can establish sufficient originality.