{"title":"The formation of pineapple translucency was regulated by Ca2+/H+ antiporter gene AcoCAX2","authors":"Haiyan Shu, Farinaz Vafadar, Aiping Luan, You Wang, Junhu He, Rulin Zhan, Shenghe Chang","doi":"10.1186/s40538-025-00746-6","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Flesh translucency is a significant physiological disorder in pineapple cultivation. Calcium deficiency in the fruit is a primary cause of flesh translucency. However, simply adding calcium to the soil or applying calcium fertilizer to the leaves and fruits does not eliminate flesh translucency. The mechanism behind this phenomenon has not been previously documented.</p><h3>Results</h3><p>Our research discovered that the calcium content in the stalk was significantly higher than in the fruit. Calcium ions are primarily transported through the phloem. The calcium concentration in the phloem sap of pineapple stalk at different stages ranged from 14 to 17 µmol/L. The transporter responsible for unloading Ca<sup>2+</sup> across the membrane of the end sieve vessel in the stalk phloem is the Ca<sup>2+</sup>/H<sup>+</sup> antiporter exchanger (CAX). Among the four CAX genes in pineapple, only AcoCAX2 is expressed in the stalk. The AcoCAX2 protein is located in the plasma membrane and cytoplasm. Calcium-sensitive yeast K667 transformed with AcoCAX2 absorbed more calcium ions from the medium compared to the control. The promoter proNtPRB1b-proAcoCAX2 is specifically expressed in the junction between the stalk and fruit. Plants overexpressing AcoCAX2 in this junction absorbed more calcium in the fruit, resulting in a lower incidence of translucency compared to the control. Fruit with a mutant AcoCAX2 gene contained less calcium and exhibited a higher incidence of translucency than control.</p><h3>Conclusion</h3><p>The mutant flesh with AcoCAX2 contained more liquid in the intercellular space compared to the wild type and control. AcoCAX2 is the main gene responsible for transferring calcium ions from the stalk phloem into the fruit.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"12 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-025-00746-6","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-025-00746-6","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Flesh translucency is a significant physiological disorder in pineapple cultivation. Calcium deficiency in the fruit is a primary cause of flesh translucency. However, simply adding calcium to the soil or applying calcium fertilizer to the leaves and fruits does not eliminate flesh translucency. The mechanism behind this phenomenon has not been previously documented.
Results
Our research discovered that the calcium content in the stalk was significantly higher than in the fruit. Calcium ions are primarily transported through the phloem. The calcium concentration in the phloem sap of pineapple stalk at different stages ranged from 14 to 17 µmol/L. The transporter responsible for unloading Ca2+ across the membrane of the end sieve vessel in the stalk phloem is the Ca2+/H+ antiporter exchanger (CAX). Among the four CAX genes in pineapple, only AcoCAX2 is expressed in the stalk. The AcoCAX2 protein is located in the plasma membrane and cytoplasm. Calcium-sensitive yeast K667 transformed with AcoCAX2 absorbed more calcium ions from the medium compared to the control. The promoter proNtPRB1b-proAcoCAX2 is specifically expressed in the junction between the stalk and fruit. Plants overexpressing AcoCAX2 in this junction absorbed more calcium in the fruit, resulting in a lower incidence of translucency compared to the control. Fruit with a mutant AcoCAX2 gene contained less calcium and exhibited a higher incidence of translucency than control.
Conclusion
The mutant flesh with AcoCAX2 contained more liquid in the intercellular space compared to the wild type and control. AcoCAX2 is the main gene responsible for transferring calcium ions from the stalk phloem into the fruit.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.