Neural Network–Enhanced Electrochemical/SERS Dual-Mode Microfluidic Platform for Accurate Detection of Interleukin-6 in Diabetic Wound Exudates

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Mingrui Chen, Guan Liu, Li Wang, Amin Zhang, Ziyang Yang, Xia Li, Zhong Zhang, Song Gu, Daxiang Cui, Hossam Haick, Ning Tang
{"title":"Neural Network–Enhanced Electrochemical/SERS Dual-Mode Microfluidic Platform for Accurate Detection of Interleukin-6 in Diabetic Wound Exudates","authors":"Mingrui Chen, Guan Liu, Li Wang, Amin Zhang, Ziyang Yang, Xia Li, Zhong Zhang, Song Gu, Daxiang Cui, Hossam Haick, Ning Tang","doi":"10.1021/acs.analchem.4c05537","DOIUrl":null,"url":null,"abstract":"Interleukin-6 (IL-6) plays a pivotal role in the inflammatory response of diabetic wounds, providing critical insights for clinicians in the development of personalized treatment strategies. However, the low concentration of IL-6 in biological samples, coupled with the presence of numerous interfering substances, poses a significant challenge for its rapid and accurate detection. Herein, we present a dual-mode microfluidic platform integrating electrochemical (EC) and surface-enhanced Raman spectroscopy (SERS) to achieve the timely and highly reliable quantification of IL-6. Efficient binding between IL-6 and antibody-conjugated SERS nanoprobes is obtained through a square-wave micromixer with nonleaky obstacles, forming sandwich immunocomplexes with IL-6 capture antibodies on the working electrode in the detection area, enabling acquisition of both EC and SERS signals. This microfluidic platform demonstrates excellent selectivity and sensitivity, with detection limits of 0.085 and 0.047 pg/mL for EC and SERS modes, respectively. Importantly, by incorporating a neural network (NN) with a self-attention (SA) mechanism to evaluate the relative weights of data from both modes, the platform achieves a quantitative accuracy of up to 99.8% across a range of 0.05–1000 pg/mL, demonstrating significant performance at low concentrations. Moreover, the NN-enhanced dual-mode microfluidic platform effectively detects IL-6 in diabetic wound exudates with results that align closely with clinical data. This integrated dual-mode microfluidic platform offers promising potential for the rapid and accurate detection of cytokines.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"52 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05537","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Interleukin-6 (IL-6) plays a pivotal role in the inflammatory response of diabetic wounds, providing critical insights for clinicians in the development of personalized treatment strategies. However, the low concentration of IL-6 in biological samples, coupled with the presence of numerous interfering substances, poses a significant challenge for its rapid and accurate detection. Herein, we present a dual-mode microfluidic platform integrating electrochemical (EC) and surface-enhanced Raman spectroscopy (SERS) to achieve the timely and highly reliable quantification of IL-6. Efficient binding between IL-6 and antibody-conjugated SERS nanoprobes is obtained through a square-wave micromixer with nonleaky obstacles, forming sandwich immunocomplexes with IL-6 capture antibodies on the working electrode in the detection area, enabling acquisition of both EC and SERS signals. This microfluidic platform demonstrates excellent selectivity and sensitivity, with detection limits of 0.085 and 0.047 pg/mL for EC and SERS modes, respectively. Importantly, by incorporating a neural network (NN) with a self-attention (SA) mechanism to evaluate the relative weights of data from both modes, the platform achieves a quantitative accuracy of up to 99.8% across a range of 0.05–1000 pg/mL, demonstrating significant performance at low concentrations. Moreover, the NN-enhanced dual-mode microfluidic platform effectively detects IL-6 in diabetic wound exudates with results that align closely with clinical data. This integrated dual-mode microfluidic platform offers promising potential for the rapid and accurate detection of cytokines.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信