{"title":"Adaptive and Robust Switchable Adhesion System: Bio-Inspired Synergistic Integration from Octopuses and Geckos.","authors":"Zhiyuan Weng, Zhouyi Wang, Chi Xu, Qingsong Yuan, Bingcheng Wang, Wenxin Zhao, Yunlong Duan, Junshen Yao, Peiqing Zhang, Qianzhi Wang, Zhendong Dai","doi":"10.1089/soro.2024.0097","DOIUrl":null,"url":null,"abstract":"<p><p>Existing climbing robots achieve stable movements on limited surface types. However, adapting a single robot design to various surface shapes remains a substantial challenge. Based on the van der Waals (vdW) force-mediated adhesion mechanism of a gecko foot and negative pressure from octopus suckers, this study introduces a biomimetic integration strategy for designing and fabricating a pneumatically actuated switchable adhesion system (SAS). The SAS includes an adhesive material responsible for generating vdW forces and a suction cup with a membrane structure that enables a vacuum suction force. Owing to nonlinear superposition effects, this SAS exhibited a 56.4% higher adhesion force than the algebraic superposition of the vdW and vacuum suction forces. Moreover, the SAS offers a quick switch between adhesion and detachment through pneumatic modulation, achieving a synergistic balance between adaptability, robustness, and load-bearing efficiency. Equipped with this SAS, we developed a pneumo-electrically actuated quadruped-climbing robot that can climb planes with different tilt angles and surfaces with different curvatures.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/soro.2024.0097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Existing climbing robots achieve stable movements on limited surface types. However, adapting a single robot design to various surface shapes remains a substantial challenge. Based on the van der Waals (vdW) force-mediated adhesion mechanism of a gecko foot and negative pressure from octopus suckers, this study introduces a biomimetic integration strategy for designing and fabricating a pneumatically actuated switchable adhesion system (SAS). The SAS includes an adhesive material responsible for generating vdW forces and a suction cup with a membrane structure that enables a vacuum suction force. Owing to nonlinear superposition effects, this SAS exhibited a 56.4% higher adhesion force than the algebraic superposition of the vdW and vacuum suction forces. Moreover, the SAS offers a quick switch between adhesion and detachment through pneumatic modulation, achieving a synergistic balance between adaptability, robustness, and load-bearing efficiency. Equipped with this SAS, we developed a pneumo-electrically actuated quadruped-climbing robot that can climb planes with different tilt angles and surfaces with different curvatures.