Large-scale proteomic analyses of incident Parkinson's disease reveal new pathophysiological insights and potential biomarkers.

IF 17 Q1 CELL BIOLOGY
Nature aging Pub Date : 2025-04-01 Epub Date: 2025-02-20 DOI:10.1038/s43587-025-00818-0
Yi-Han Gan, Ling-Zhi Ma, Yi Zhang, Jia You, Yu Guo, Yu He, Lin-Bo Wang, Xiao-Yu He, Yu-Zhu Li, Qiang Dong, Jian-Feng Feng, Wei Cheng, Jin-Tai Yu
{"title":"Large-scale proteomic analyses of incident Parkinson's disease reveal new pathophysiological insights and potential biomarkers.","authors":"Yi-Han Gan, Ling-Zhi Ma, Yi Zhang, Jia You, Yu Guo, Yu He, Lin-Bo Wang, Xiao-Yu He, Yu-Zhu Li, Qiang Dong, Jian-Feng Feng, Wei Cheng, Jin-Tai Yu","doi":"10.1038/s43587-025-00818-0","DOIUrl":null,"url":null,"abstract":"<p><p>The early pathophysiology of Parkinson's disease (PD) is poorly understood. We analyzed 2,920 Olink-measured plasma proteins in 51,804 UK Biobank participants, identifying 859 incident PD cases after 14.45 years. We found 38 PD-related proteins, with six of the top ten validated in the Parkinson's Progression Markers Initiative (PPMI) cohort. ITGAV, HNMT and ITGAM showed consistent significant association (hazard ratio: 0.11-0.57, P = 6.90 × 10<sup>-24</sup> to 2.10 × 10<sup>-11</sup>). Lipid metabolism dysfunction was evident 15 years before PD onset, and levels of BAG3, HPGDS, ITGAV and PEPD continuously decreased before diagnosis. These proteins were linked to prodromal symptoms and brain measures. Mendelian randomization suggested ITGAM and EGFR as potential causes of PD. A predictive model using machine learning combined the top 16 proteins and demographics, achieving high accuracy for 5-year (area under the curve (AUC) = 0.887) and over-5-year PD prediction (AUC = 0.816), outperforming demographic-only models. It was externally validated in PPMI (AUC = 0.802). Our findings reveal early peripheral pathophysiological changes in PD crucial for developing early biomarkers and precision therapies.</p>","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":" ","pages":"642-657"},"PeriodicalIF":17.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43587-025-00818-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The early pathophysiology of Parkinson's disease (PD) is poorly understood. We analyzed 2,920 Olink-measured plasma proteins in 51,804 UK Biobank participants, identifying 859 incident PD cases after 14.45 years. We found 38 PD-related proteins, with six of the top ten validated in the Parkinson's Progression Markers Initiative (PPMI) cohort. ITGAV, HNMT and ITGAM showed consistent significant association (hazard ratio: 0.11-0.57, P = 6.90 × 10-24 to 2.10 × 10-11). Lipid metabolism dysfunction was evident 15 years before PD onset, and levels of BAG3, HPGDS, ITGAV and PEPD continuously decreased before diagnosis. These proteins were linked to prodromal symptoms and brain measures. Mendelian randomization suggested ITGAM and EGFR as potential causes of PD. A predictive model using machine learning combined the top 16 proteins and demographics, achieving high accuracy for 5-year (area under the curve (AUC) = 0.887) and over-5-year PD prediction (AUC = 0.816), outperforming demographic-only models. It was externally validated in PPMI (AUC = 0.802). Our findings reveal early peripheral pathophysiological changes in PD crucial for developing early biomarkers and precision therapies.

帕金森病的大规模蛋白质组学分析揭示了新的病理生理学见解和潜在的生物标志物。
帕金森病(PD)的早期病理生理学尚不清楚。我们分析了51804名英国生物银行参与者的2920个olink测量的血浆蛋白,确定了859例14.45年后发生的PD病例。我们发现了38种pd相关蛋白,其中前10种蛋白中有6种在帕金森进展标志物倡议(PPMI)队列中得到了验证。ITGAV、HNMT和ITGAM具有一致的显著相关性(风险比:0.11 ~ 0.57,P = 6.90 × 10-24 ~ 2.10 × 10-11)。PD发病前15年脂质代谢功能障碍明显,诊断前BAG3、HPGDS、ITGAV、PEPD水平持续下降。这些蛋白质与前驱症状和大脑测量有关。孟德尔随机化提示ITGAM和EGFR是PD的潜在原因。使用机器学习的预测模型结合了前16种蛋白质和人口统计数据,实现了5年(曲线下面积(AUC) = 0.887)和5年以上PD预测(AUC = 0.816)的高精度,优于仅限人口统计数据的模型。体外PPMI验证(AUC = 0.802)。我们的研究结果揭示了PD的早期外周病理生理变化对于开发早期生物标志物和精确治疗至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信