Hyun Suk Wang, Mikhail Agrachev, Hongsik Kim, Nghia P Truong, Tae-Lim Choi, Gunnar Jeschke, Athina Anastasaki
{"title":"Visible light-triggered depolymerization of commercial polymethacrylates.","authors":"Hyun Suk Wang, Mikhail Agrachev, Hongsik Kim, Nghia P Truong, Tae-Lim Choi, Gunnar Jeschke, Athina Anastasaki","doi":"10.1126/science.adr1637","DOIUrl":null,"url":null,"abstract":"<p><p>The reversion of vinyl polymers with carbon-carbon backbones to their monomers represents an ideal path to alleviate the growing plastic waste stream. However, depolymerizing such stable materials remains a challenge, with state-of-the-art methods relying on \"designer\" polymers that are neither commercially produced nor suitable for real-world applications. In this work, we report a main chain-initiated, visible light-triggered depolymerization directly applicable to commercial polymers containing undisclosed impurities (e.g., comonomers, additives, or dyes). By in situ generation of chlorine radicals directly from the solvent, near-quantitative (>98%) depolymerization of polymethacrylates could be achieved regardless of their synthetic route (e.g., radical or ionic polymerization), end group, and molecular weight (up to 1.6 million daltons). The possibility to perform multigram-scale depolymerizations and confer temporal control renders this methodology a versatile and general route to recycling.</p>","PeriodicalId":21678,"journal":{"name":"Science","volume":"387 6736","pages":"874-880"},"PeriodicalIF":44.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/science.adr1637","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The reversion of vinyl polymers with carbon-carbon backbones to their monomers represents an ideal path to alleviate the growing plastic waste stream. However, depolymerizing such stable materials remains a challenge, with state-of-the-art methods relying on "designer" polymers that are neither commercially produced nor suitable for real-world applications. In this work, we report a main chain-initiated, visible light-triggered depolymerization directly applicable to commercial polymers containing undisclosed impurities (e.g., comonomers, additives, or dyes). By in situ generation of chlorine radicals directly from the solvent, near-quantitative (>98%) depolymerization of polymethacrylates could be achieved regardless of their synthetic route (e.g., radical or ionic polymerization), end group, and molecular weight (up to 1.6 million daltons). The possibility to perform multigram-scale depolymerizations and confer temporal control renders this methodology a versatile and general route to recycling.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.