{"title":"Simulation of a 1-THz Complex Cavity Gyrotron With a Magnetic Cusp Gun","authors":"Xu Qi;Zhi Yi;Tao Song;Yuxuan Chai;Taotao Mao;Chen Zhang;Peisheng Liang;Chenghui Zhu;Jiao Jiao;Na Yao;Kaichun Zhang;Zhenhua Wu;Yanyu Wei;Yubin Gong;Wei Wang;Diwei Liu","doi":"10.1109/TPS.2025.3526243","DOIUrl":null,"url":null,"abstract":"In this article, a 1-THz fourth harmonic complex cavity gyrotron with the magnetic cusp gun (MCG) has been investigated theoretically with the self-consistent nonlinear theory. The self-consistent nonlinear theory is composed of the electron motion equation and the electron excitation equation, which could accurately describe the interaction process between the electron beam and electromagnetic wave. The MCG is optimized to generate a large-orbit beam (LOB), and the complex cavity is designed to suppress parasitic modes and improve the output efficiency. The complex cavity gyrotron is optimized to operate at a frequency of 1-THz, achieving an output efficiency of 1% and an output power of 0.5 kW when the beam voltage is 59 kV, the beam current is 0.8 A, and the magnetic field is 9.9 T. The effects of the beam voltage, the beam current, and the pitch factor of the electron beam on the output efficiency are analyzed. Results show that when the beam voltage varies between 57 and 61 kV, the beam current between 0.3 and 1.2 A, and the pitch factor between 1.05 and 1.5, the output efficiency of the gyrotron is maintained above 0.7%. The effects of the beam quality, including the velocity spread and the beam thickness on the output efficiency, are discussed as well. Meanwhile, the effects of machining errors including structure changes of the complex cavity gyrotron and the eccentricity angle of the cathode in MCG on the output efficiency are discussed.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 1","pages":"153-160"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10840302/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, a 1-THz fourth harmonic complex cavity gyrotron with the magnetic cusp gun (MCG) has been investigated theoretically with the self-consistent nonlinear theory. The self-consistent nonlinear theory is composed of the electron motion equation and the electron excitation equation, which could accurately describe the interaction process between the electron beam and electromagnetic wave. The MCG is optimized to generate a large-orbit beam (LOB), and the complex cavity is designed to suppress parasitic modes and improve the output efficiency. The complex cavity gyrotron is optimized to operate at a frequency of 1-THz, achieving an output efficiency of 1% and an output power of 0.5 kW when the beam voltage is 59 kV, the beam current is 0.8 A, and the magnetic field is 9.9 T. The effects of the beam voltage, the beam current, and the pitch factor of the electron beam on the output efficiency are analyzed. Results show that when the beam voltage varies between 57 and 61 kV, the beam current between 0.3 and 1.2 A, and the pitch factor between 1.05 and 1.5, the output efficiency of the gyrotron is maintained above 0.7%. The effects of the beam quality, including the velocity spread and the beam thickness on the output efficiency, are discussed as well. Meanwhile, the effects of machining errors including structure changes of the complex cavity gyrotron and the eccentricity angle of the cathode in MCG on the output efficiency are discussed.
期刊介绍:
The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.