Integrated stochastic reserve estimation and MILP energy planning for high renewable penetration: Application to 2050 South African energy system

IF 4.8 2区 工程技术 Q2 ENERGY & FUELS
Enrico Giglio , Davide Fioriti , Munyaradzi Justice Chihota , Davide Poli , Bernard Bekker , Giuliana Mattiazzo
{"title":"Integrated stochastic reserve estimation and MILP energy planning for high renewable penetration: Application to 2050 South African energy system","authors":"Enrico Giglio ,&nbsp;Davide Fioriti ,&nbsp;Munyaradzi Justice Chihota ,&nbsp;Davide Poli ,&nbsp;Bernard Bekker ,&nbsp;Giuliana Mattiazzo","doi":"10.1016/j.segan.2025.101650","DOIUrl":null,"url":null,"abstract":"<div><div>The energy transition imposes a shift towards renewable energy sources, and the integration of variable ones introduces significant risks to power system stability. Variable renewable energy sources are mostly unpredictable and can provide limited spare capacity to compensate for imbalance in demand and supply. To meet system adequacy and reliability requirements, the power system is operated with different types of reserve margins to ensure the availability of spare capacity at various time scales. However, despite existing guidelines to operate the current system, limited methodologies have been proposed to estimate reserve requirements for future power systems with high penetration of renewables, including their integration into planning tools. In this study, a comprehensive methodology is proposed to estimate the least-cost power system design which include an endogenous stochastic model for estimating reserve requirements interfaced to a Mixed-Integer Linear Programming model. The proposed stochastic reserve estimation model incorporates generator tripping events, renewable energy variability, and ramping characteristics of the residual demand, extending ENTSO-E guidelines to accommodate future scenarios with high penetration of renewable energy sources. Furthermore, a non-linear parametric function is trained to represent the results of the stochastic reserve estimation model and then integrated into an optimization model to plan future power systems, using an iterative approach. The methodology is validated on the current South African power system. The results indicate the model’s effectiveness in optimizing reserve requirements, showing substantial benefits in including storage and other renewable energy technologies to meet future energy demands, while reducing carbon emissions and enhancing grid reliability.</div></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"42 ","pages":"Article 101650"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352467725000323","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The energy transition imposes a shift towards renewable energy sources, and the integration of variable ones introduces significant risks to power system stability. Variable renewable energy sources are mostly unpredictable and can provide limited spare capacity to compensate for imbalance in demand and supply. To meet system adequacy and reliability requirements, the power system is operated with different types of reserve margins to ensure the availability of spare capacity at various time scales. However, despite existing guidelines to operate the current system, limited methodologies have been proposed to estimate reserve requirements for future power systems with high penetration of renewables, including their integration into planning tools. In this study, a comprehensive methodology is proposed to estimate the least-cost power system design which include an endogenous stochastic model for estimating reserve requirements interfaced to a Mixed-Integer Linear Programming model. The proposed stochastic reserve estimation model incorporates generator tripping events, renewable energy variability, and ramping characteristics of the residual demand, extending ENTSO-E guidelines to accommodate future scenarios with high penetration of renewable energy sources. Furthermore, a non-linear parametric function is trained to represent the results of the stochastic reserve estimation model and then integrated into an optimization model to plan future power systems, using an iterative approach. The methodology is validated on the current South African power system. The results indicate the model’s effectiveness in optimizing reserve requirements, showing substantial benefits in including storage and other renewable energy technologies to meet future energy demands, while reducing carbon emissions and enhancing grid reliability.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy Grids & Networks
Sustainable Energy Grids & Networks Energy-Energy Engineering and Power Technology
CiteScore
7.90
自引率
13.00%
发文量
206
审稿时长
49 days
期刊介绍: Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信