{"title":"Critical component analysis of cyber-physical power systems in cascading failures using graph convolutional networks: An energy-based approach","authors":"Sajedeh Soleimani, Ahmad Afshar, Hajar Atrianfar","doi":"10.1016/j.segan.2025.101653","DOIUrl":null,"url":null,"abstract":"<div><div>Power systems, with increasing integration into communication networks, have evolved to become complex and interdependent cyber–physical power systems that are highly vulnerable to cascading failures. These failures, due to their propagation through the cyber and physical networks, often lead to severe disruptions. We employ improved percolation theory to model cascading failures triggered by malware cyber-attacks. Addressing the vulnerability of CPPS requires a comprehensive analysis that spans both the structural and functional dimensions of CPPS. This paper introduces a novel framework for vulnerability assessment in CPPS using Graph Convolutional Networks (GCN). Our approach captures the topological complexities and dynamic characteristics of CPPS, incorporating the entropy of potential energy of power system as a new feature to predict and analyze failure propagation. Through Layer-wise Relevance Propagation (LRP), we subsequently quantify the influence of potential energy on system vulnerabilities. Critical components are identified by using LRP scores and an entropy weighting method (EWM). Simulation results based on the cyber–physical IEEE 39-bus and IEEE RTS-96 power systems as test cases, demonstrate the model’s efficacy in identifying vulnerable nodes and branches and highlight the significant role of potential energy in cascading failures. This framework provides a comprehensive approach for real-time vulnerability assessments and resilience enhancement in CPPS.</div></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"42 ","pages":"Article 101653"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352467725000359","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Power systems, with increasing integration into communication networks, have evolved to become complex and interdependent cyber–physical power systems that are highly vulnerable to cascading failures. These failures, due to their propagation through the cyber and physical networks, often lead to severe disruptions. We employ improved percolation theory to model cascading failures triggered by malware cyber-attacks. Addressing the vulnerability of CPPS requires a comprehensive analysis that spans both the structural and functional dimensions of CPPS. This paper introduces a novel framework for vulnerability assessment in CPPS using Graph Convolutional Networks (GCN). Our approach captures the topological complexities and dynamic characteristics of CPPS, incorporating the entropy of potential energy of power system as a new feature to predict and analyze failure propagation. Through Layer-wise Relevance Propagation (LRP), we subsequently quantify the influence of potential energy on system vulnerabilities. Critical components are identified by using LRP scores and an entropy weighting method (EWM). Simulation results based on the cyber–physical IEEE 39-bus and IEEE RTS-96 power systems as test cases, demonstrate the model’s efficacy in identifying vulnerable nodes and branches and highlight the significant role of potential energy in cascading failures. This framework provides a comprehensive approach for real-time vulnerability assessments and resilience enhancement in CPPS.
期刊介绍:
Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.