Accelerating crystal structure search through active learning with neural networks for rapid relaxations

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Stefaan S. P. Hessmann, Kristof T. Schütt, Niklas W. A. Gebauer, Michael Gastegger, Tamio Oguchi, Tomoki Yamashita
{"title":"Accelerating crystal structure search through active learning with neural networks for rapid relaxations","authors":"Stefaan S. P. Hessmann, Kristof T. Schütt, Niklas W. A. Gebauer, Michael Gastegger, Tamio Oguchi, Tomoki Yamashita","doi":"10.1038/s41524-025-01523-7","DOIUrl":null,"url":null,"abstract":"<p>Global optimization of crystal compositions is a significant yet computationally intensive method to identify stable structures within chemical space. The specific physical properties linked to a three-dimensional atomic arrangement make this an essential task in the development of new materials. We present a method that efficiently uses active learning of neural network force fields for structure relaxation, minimizing the required number of steps in the process. This is achieved by neural network force fields equipped with uncertainty estimation, which iteratively guide a pool of randomly generated candidates toward their respective local minima. Using this approach, we are able to effectively identify the most promising candidates for further evaluation using density functional theory (DFT). Our method not only reliably reduces computational costs by up to two orders of magnitude across the benchmark systems Si<sub>16</sub>, Na<sub>8</sub>Cl<sub>8</sub>, Ga<sub>8</sub>As<sub>8</sub> and Al<sub>4</sub>O<sub>6</sub> but also excels in finding the most stable minimum for the unseen, more complex systems Si<sub>46</sub> and Al<sub>16</sub>O<sub>24</sub>. Moreover, we demonstrate at the example of Si<sub>16</sub> that our method can find multiple relevant local minima while only adding minor computational effort.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"25 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01523-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Global optimization of crystal compositions is a significant yet computationally intensive method to identify stable structures within chemical space. The specific physical properties linked to a three-dimensional atomic arrangement make this an essential task in the development of new materials. We present a method that efficiently uses active learning of neural network force fields for structure relaxation, minimizing the required number of steps in the process. This is achieved by neural network force fields equipped with uncertainty estimation, which iteratively guide a pool of randomly generated candidates toward their respective local minima. Using this approach, we are able to effectively identify the most promising candidates for further evaluation using density functional theory (DFT). Our method not only reliably reduces computational costs by up to two orders of magnitude across the benchmark systems Si16, Na8Cl8, Ga8As8 and Al4O6 but also excels in finding the most stable minimum for the unseen, more complex systems Si46 and Al16O24. Moreover, we demonstrate at the example of Si16 that our method can find multiple relevant local minima while only adding minor computational effort.

Abstract Image

通过神经网络快速松弛的主动学习加速晶体结构搜索
晶体组成的全局优化是识别化学空间内稳定结构的一种重要而又需要大量计算的方法。与三维原子排列有关的特定物理性质使其成为开发新材料的一项重要任务。我们提出了一种有效地利用神经网络力场的主动学习进行结构松弛的方法,最小化了过程中所需的步骤数。这是通过配备不确定性估计的神经网络力场来实现的,该力场迭代地引导随机生成的候选对象池走向各自的局部最小值。使用这种方法,我们能够有效地识别最有希望的候选者,使用密度泛函理论(DFT)进行进一步评估。我们的方法不仅可靠地将基准系统Si16, Na8Cl8, Ga8As8和Al4O6的计算成本降低了两个数量级,而且在寻找未见过的,更复杂的系统Si46和Al16O24的最稳定最小值方面表现出色。此外,我们在Si16的示例中演示了我们的方法可以在只增加少量计算工作量的情况下找到多个相关的局部最小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信