Daodian Wang , Ziqi Xu , Yuzhu Wang , Yufang Li , Wentao Zheng , Yunmei Chai , Guangqiang Wei , Aixiang Huang
{"title":"Identification and characterization of novel antioxidant peptides from Yunnan dry-cured beef: A combined in silico and in vitro study","authors":"Daodian Wang , Ziqi Xu , Yuzhu Wang , Yufang Li , Wentao Zheng , Yunmei Chai , Guangqiang Wei , Aixiang Huang","doi":"10.1016/j.foodchem.2025.143485","DOIUrl":null,"url":null,"abstract":"<div><div>Dry-cured meats are a good natural source of bioactive peptides. However, there is limited information on the composition and antioxidant activity of peptides in Yunnan dry-cured beef (YDB). This study aimed to identify novel antioxidant peptides from YDB using peptidomics, <em>in silico</em> analysis, and <em>in vitro</em> experimental validation while predicting their antioxidant mechanism through molecular docking. A total of 541 peptides were identified in YDB, with the predominant sources being creatine kinase (13.5 %), myosin (10.4 %), and actin (7.4 %). The novel antioxidant peptides VGSYEDPYH (VH9) and FGEAAPYLRK (FK10) demonstrated a high safety profile, with a hemolysis rate of less than 5 %. Notably, VH9 exhibited excellent ABTS radical scavenging activity (IC<sub>50</sub> = 19.698 μM), DPPH radical scavenging activity (IC<sub>50</sub> = 1500.825 μM), and protection against oxidative stress injury in HepG2 cells. Molecular docking studies revealed that hydrogen bonding and hydrophobic interactions were the primary forces driving the binding of VH9 to the active sites of ABTS, DPPH, Keap1, and myeloperoxidase (MPO). VH9 may protect cells from oxidative damage through radical scavenging, inhibition of reactive oxygen species (ROS) generation, and modulation of the Keap1-Nrf2 antioxidant pathway. Peptides derived from YDB exhibited strong antioxidant activity and showed potential for application as natural antioxidants.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"477 ","pages":"Article 143485"},"PeriodicalIF":8.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814625007368","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Dry-cured meats are a good natural source of bioactive peptides. However, there is limited information on the composition and antioxidant activity of peptides in Yunnan dry-cured beef (YDB). This study aimed to identify novel antioxidant peptides from YDB using peptidomics, in silico analysis, and in vitro experimental validation while predicting their antioxidant mechanism through molecular docking. A total of 541 peptides were identified in YDB, with the predominant sources being creatine kinase (13.5 %), myosin (10.4 %), and actin (7.4 %). The novel antioxidant peptides VGSYEDPYH (VH9) and FGEAAPYLRK (FK10) demonstrated a high safety profile, with a hemolysis rate of less than 5 %. Notably, VH9 exhibited excellent ABTS radical scavenging activity (IC50 = 19.698 μM), DPPH radical scavenging activity (IC50 = 1500.825 μM), and protection against oxidative stress injury in HepG2 cells. Molecular docking studies revealed that hydrogen bonding and hydrophobic interactions were the primary forces driving the binding of VH9 to the active sites of ABTS, DPPH, Keap1, and myeloperoxidase (MPO). VH9 may protect cells from oxidative damage through radical scavenging, inhibition of reactive oxygen species (ROS) generation, and modulation of the Keap1-Nrf2 antioxidant pathway. Peptides derived from YDB exhibited strong antioxidant activity and showed potential for application as natural antioxidants.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.