{"title":"Sequential Activation of DNA Sensor Enables Correlated Imaging of Dual-Enzyme Activities in Living Cells","authors":"Xian Wang, Deyu Yi, Mengyuan Li, Zhengping Li","doi":"10.1021/acs.analchem.4c05454","DOIUrl":null,"url":null,"abstract":"The DNA repair system relies on the coordinated action of multiple enzymes to maintain genomic stability, with apurinic/apyrimidinic endonuclease 1 (APE1) and flap endonuclease 1 (FEN1) playing pivotal roles in the long-patch base excision repair (LP-BER) pathway. Elevated levels of APE1 and FEN1 have been associated with tumor progression and resistance to therapy, making them key biomarkers for cancer diagnosis and treatment monitoring. Here, we present a sequentially activated AND-logic DNA sensor (D-AF) for the correlated imaging of APE1 and FEN1 in living cells. The sensor operates through a sequential process: APE1 first recognizes and cleaves an apurinic site, initiating structural changes that enable FEN1 to cleave a 5′ flap, resulting in restored fluorescence. We demonstrate the use of the D-AF-based nanosensor for <i>in situ</i> imaging of APE1 and FEN1 activities in cancer cells and for monitoring of enzyme dynamics during chemotherapy. This platform offers a valuable tool for investigating DNA repair mechanisms and their roles in cancer diagnosis and treatment.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"29 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05454","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The DNA repair system relies on the coordinated action of multiple enzymes to maintain genomic stability, with apurinic/apyrimidinic endonuclease 1 (APE1) and flap endonuclease 1 (FEN1) playing pivotal roles in the long-patch base excision repair (LP-BER) pathway. Elevated levels of APE1 and FEN1 have been associated with tumor progression and resistance to therapy, making them key biomarkers for cancer diagnosis and treatment monitoring. Here, we present a sequentially activated AND-logic DNA sensor (D-AF) for the correlated imaging of APE1 and FEN1 in living cells. The sensor operates through a sequential process: APE1 first recognizes and cleaves an apurinic site, initiating structural changes that enable FEN1 to cleave a 5′ flap, resulting in restored fluorescence. We demonstrate the use of the D-AF-based nanosensor for in situ imaging of APE1 and FEN1 activities in cancer cells and for monitoring of enzyme dynamics during chemotherapy. This platform offers a valuable tool for investigating DNA repair mechanisms and their roles in cancer diagnosis and treatment.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.